JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Detailed Notes: Definite Integral

Detailed Notes: Definite Integral | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


DEFINITE INTEGRATION 
Imagine looking at the shadow cast by a tree at sunset. The length and shape of the shadow vary with 
the terrain and the tree's shape. To find the exact area of that shadow, we use the concept of the definite 
integral —a mathematical tool that calculates the area under a curve. 
A definite integral, written as ?
?? ?? ??? ( ?? ) ???? , measures the total area between a curve ?? ( ?? ) and the x-axis 
from ?? = ?? , ?? = ?? . This concept is crucial in fields like finance, where it helps quantify continuous 
change, track investments, and analyze economic trends, making it invaluable for informed decision-
making. 
1. THE FUNDAMENTAL THEOREM OF 
CALCULUS: 
The Fundamental Theorem of Calculus is appropriately named because it establishes a connection 
between the two branches of calculus: differential calculus and integral calculus. Differential calculus 
arose from the tangent problem, whereas integral calculus arose from a seemingly unrelated problem, 
the area problem. Newton's teacher at Cambridge, Isaac Barrow (1630-1677), discovered that these two 
problems are actually closely related. In fact, he realized that differentiation and integration are inverse 
processes. The Fundamental Theorem of Calculus gives the precise inverse relationship between the 
derivative and the integral. It was Newton and Leibnitz who exploited this relationship and used it to 
develop calculus into a systematic mathematical method. In particular, they saw that the Fundamental 
Theorem enabled them to compute areas and integrals very easily without having to compute them as 
limits of sums. 
 
The Fundamental Theorem of Calculus, Part 1 
If ?? is continuous on [?? , ?? ], then the function ?? defined by 
?? ( ?? ) = ? ?
?? ?? ??? ( ?? ) ???? ?? = ?? = ?? 
Page 2


DEFINITE INTEGRATION 
Imagine looking at the shadow cast by a tree at sunset. The length and shape of the shadow vary with 
the terrain and the tree's shape. To find the exact area of that shadow, we use the concept of the definite 
integral —a mathematical tool that calculates the area under a curve. 
A definite integral, written as ?
?? ?? ??? ( ?? ) ???? , measures the total area between a curve ?? ( ?? ) and the x-axis 
from ?? = ?? , ?? = ?? . This concept is crucial in fields like finance, where it helps quantify continuous 
change, track investments, and analyze economic trends, making it invaluable for informed decision-
making. 
1. THE FUNDAMENTAL THEOREM OF 
CALCULUS: 
The Fundamental Theorem of Calculus is appropriately named because it establishes a connection 
between the two branches of calculus: differential calculus and integral calculus. Differential calculus 
arose from the tangent problem, whereas integral calculus arose from a seemingly unrelated problem, 
the area problem. Newton's teacher at Cambridge, Isaac Barrow (1630-1677), discovered that these two 
problems are actually closely related. In fact, he realized that differentiation and integration are inverse 
processes. The Fundamental Theorem of Calculus gives the precise inverse relationship between the 
derivative and the integral. It was Newton and Leibnitz who exploited this relationship and used it to 
develop calculus into a systematic mathematical method. In particular, they saw that the Fundamental 
Theorem enabled them to compute areas and integrals very easily without having to compute them as 
limits of sums. 
 
The Fundamental Theorem of Calculus, Part 1 
If ?? is continuous on [?? , ?? ], then the function ?? defined by 
?? ( ?? ) = ? ?
?? ?? ??? ( ?? ) ???? ?? = ?? = ?? 
is continuous on [?? , ?? ] and differentiable on ( ?? , ?? ) , and ?? '
( ?? ) = ?? ( ?? ) . 
The Fundamental Theorem of Calculus, Part 2 
If ?? is continuous on [?? , ?? ], then 
? ?
?? ?? ??? ( ?? ) ???? = ?? ( ?? )- ?? ( ?? ) 
where ?? is any antiderivative of ?? , that is, a function such that ?? '
= ?? . 
Note: If ?
?? ?? ??? ( ?? ) ???? = 0 ? then the equation ?? ( ?? ) = 0 has atleast one root lying in ( ?? , ?? ) provided ?? is a 
continuous function in ( ?? , ?? ) . 
2. PROPERTIES OF DEFINITE INTEGRAL: 
Some properties which are quite useful while solving any kind of questions are: 
(a) ?
?? ?? ??? ( ?? ) ???? = ?
?? ?? ??? ( ?? ) ???? provided ?? is same 
(b) ?
?? ?? ??? ( ?? ) ???? = -?
?? ?? ??? ( ?? ) ???? 
(c) ?
?? ?? ??? ( ?? ) ???? = ?
?? ?? ??? ( ?? ) ???? + ?
?? ?? ??? ( ?? ) ???? , where c may lie inside or outside the interval [?? , ?? ]. This 
property is to be used when ?? is piecewise continuous in ( ?? , ?? ) . 
Problem1: If ?? ( ?? ) = {?? 2
, 0 < ?? < 2 3?? - 4,2 = ?? < 3  then evaluate ?
0
3
??? ( ?? ) ???? 
Solution:  ?
0
3
??? ( ?? ) ???? = ?
0
2
??? ( ?? ) ???? + ?
2
3
??? ( ?? ) ???? = ?
0
2
??? 2
???? + ?
2
3
?( 3?? - 4) ???? 
= (
?? 3
3
)
0
2
+ (
3?? 2
2
- 4?? )
2
3
=
8
3
+
27
2
- 12 - 6 + 8 = 37/6#( ?????? . )  
 
 
function) 
(A) -
11
2
 
(B) -
7
2
 
(C) -6 
(D) -
17
2
 
Solution:  3[?? ] - 5
|?? |
?? = 3[?? ] - 5, if ?? > 0 
= 3[?? ] + 5, if ?? < 0 
Page 3


DEFINITE INTEGRATION 
Imagine looking at the shadow cast by a tree at sunset. The length and shape of the shadow vary with 
the terrain and the tree's shape. To find the exact area of that shadow, we use the concept of the definite 
integral —a mathematical tool that calculates the area under a curve. 
A definite integral, written as ?
?? ?? ??? ( ?? ) ???? , measures the total area between a curve ?? ( ?? ) and the x-axis 
from ?? = ?? , ?? = ?? . This concept is crucial in fields like finance, where it helps quantify continuous 
change, track investments, and analyze economic trends, making it invaluable for informed decision-
making. 
1. THE FUNDAMENTAL THEOREM OF 
CALCULUS: 
The Fundamental Theorem of Calculus is appropriately named because it establishes a connection 
between the two branches of calculus: differential calculus and integral calculus. Differential calculus 
arose from the tangent problem, whereas integral calculus arose from a seemingly unrelated problem, 
the area problem. Newton's teacher at Cambridge, Isaac Barrow (1630-1677), discovered that these two 
problems are actually closely related. In fact, he realized that differentiation and integration are inverse 
processes. The Fundamental Theorem of Calculus gives the precise inverse relationship between the 
derivative and the integral. It was Newton and Leibnitz who exploited this relationship and used it to 
develop calculus into a systematic mathematical method. In particular, they saw that the Fundamental 
Theorem enabled them to compute areas and integrals very easily without having to compute them as 
limits of sums. 
 
The Fundamental Theorem of Calculus, Part 1 
If ?? is continuous on [?? , ?? ], then the function ?? defined by 
?? ( ?? ) = ? ?
?? ?? ??? ( ?? ) ???? ?? = ?? = ?? 
is continuous on [?? , ?? ] and differentiable on ( ?? , ?? ) , and ?? '
( ?? ) = ?? ( ?? ) . 
The Fundamental Theorem of Calculus, Part 2 
If ?? is continuous on [?? , ?? ], then 
? ?
?? ?? ??? ( ?? ) ???? = ?? ( ?? )- ?? ( ?? ) 
where ?? is any antiderivative of ?? , that is, a function such that ?? '
= ?? . 
Note: If ?
?? ?? ??? ( ?? ) ???? = 0 ? then the equation ?? ( ?? ) = 0 has atleast one root lying in ( ?? , ?? ) provided ?? is a 
continuous function in ( ?? , ?? ) . 
2. PROPERTIES OF DEFINITE INTEGRAL: 
Some properties which are quite useful while solving any kind of questions are: 
(a) ?
?? ?? ??? ( ?? ) ???? = ?
?? ?? ??? ( ?? ) ???? provided ?? is same 
(b) ?
?? ?? ??? ( ?? ) ???? = -?
?? ?? ??? ( ?? ) ???? 
(c) ?
?? ?? ??? ( ?? ) ???? = ?
?? ?? ??? ( ?? ) ???? + ?
?? ?? ??? ( ?? ) ???? , where c may lie inside or outside the interval [?? , ?? ]. This 
property is to be used when ?? is piecewise continuous in ( ?? , ?? ) . 
Problem1: If ?? ( ?? ) = {?? 2
, 0 < ?? < 2 3?? - 4,2 = ?? < 3  then evaluate ?
0
3
??? ( ?? ) ???? 
Solution:  ?
0
3
??? ( ?? ) ???? = ?
0
2
??? ( ?? ) ???? + ?
2
3
??? ( ?? ) ???? = ?
0
2
??? 2
???? + ?
2
3
?( 3?? - 4) ???? 
= (
?? 3
3
)
0
2
+ (
3?? 2
2
- 4?? )
2
3
=
8
3
+
27
2
- 12 - 6 + 8 = 37/6#( ?????? . )  
 
 
function) 
(A) -
11
2
 
(B) -
7
2
 
(C) -6 
(D) -
17
2
 
Solution:  3[?? ] - 5
|?? |
?? = 3[?? ] - 5, if ?? > 0 
= 3[?? ] + 5, if ?? < 0 
? ?
-3/2
2
??? ( ?? ) ???? = ?
-3/2
-1
?( -1) ???? + ?
-1
0
?( 2) ???? + ?
0
1
?( -5) ???? + ?
1
2
?( -2) ???? 
= -1 (-1 +
3
2
) + 2( 1)+ 1( -5)+ ( -2)= -
1
2
+ 2 - 5 - 2 = -
11
2
 
Ans. (A) 
Problem3: The value of ?
1
2
?( ?? [?? 2
]
+ [?? 2
]
?? ) ???? , where [.] denotes the greatest integer function, is equal to - 
(A) 
5
4
+ v3 + (2
v3
- 2
v2
) +
1
?????? 3
(9 - 3
v3
) 
(B) 
5
4
+ v3 +
v2
3
+
1
?????? 2
(2
v3
- 2
v2
) +
1
?????? 3
(9 - 3
v3
) 
(C) 
5
4
+
v2
3
+
1
?????? 2
(2
v3
- 2
v2
) +
1
?????? 3
(9 - 3
v3
) 
(D) none of these 
Solution: We have,  ?? = ?
1
2
?( ?? [?? 2
]
+ [?? 2
]
?? ) ???? = ?
1
v2
?( ?? + 1) ???? + ?
v2
v3
?( ?? 2
+ 2
?? ) ???? + ?
v3
2
?( ?? 3
+ 3
?? ) ???? 
  = (
?? 2
2
+ ?? )
1
v2
+ (
?? 3
3
+
2
?? ?????? 2
)
v2
v3
+ (
?? 4
4
+
3
?? ?????? 3
)
v3
2
  
Problem4: Evaluate: ?
-10
20
?[?????? -1
 ?? ]???? . Here [.] is the greatest integer function. 
Solution:  ?? = ?
-10
20
?[?????? -1
 ?? ]???? , we know ?????? -1
 ?? ? ( 0, ?? ) ??? ? ?? 
Thus [?????? -1
 ?? ] = {3, ?? ? ( -8, ?????? 3) 2, ?? ? ( ?????? 3, ?????? 2) 1, ?? ? ( ?????? 2, ?????? 1) 0 ?? ? ( ?????? 1, 8)  
Hence ?? = ?
-10
?????? 3
?3???? + ?
?????? 3
?????? 2
?2???? + ?
?????? 2
?????? 1
?1???? + ?
?????? 1
20
?0???? = 30 + ?????? 1 + ?????? 2 + ?????? 3 
Ans. 
Do yourself -1: 
Evaluate: 
(i) ?
0
3
?|?? 2
- ?? - 2|???? 
(ii) ?
0
4
?{?? }???? , where {.} ?????????????? ???????????????????? ???????? ?? . 
(iii) ?
0
?? /2
?|?????? ?? - ?????? ?? |???? 
(iv) If ?? ( ?? ) = {2 0 = ?? = 1 ?? + [?? ] 1 = ?? < 3 , where [.] denotes the greatest integer function. Evaluate 
?
0
2
??? ( ?? ) ???? 
Page 4


DEFINITE INTEGRATION 
Imagine looking at the shadow cast by a tree at sunset. The length and shape of the shadow vary with 
the terrain and the tree's shape. To find the exact area of that shadow, we use the concept of the definite 
integral —a mathematical tool that calculates the area under a curve. 
A definite integral, written as ?
?? ?? ??? ( ?? ) ???? , measures the total area between a curve ?? ( ?? ) and the x-axis 
from ?? = ?? , ?? = ?? . This concept is crucial in fields like finance, where it helps quantify continuous 
change, track investments, and analyze economic trends, making it invaluable for informed decision-
making. 
1. THE FUNDAMENTAL THEOREM OF 
CALCULUS: 
The Fundamental Theorem of Calculus is appropriately named because it establishes a connection 
between the two branches of calculus: differential calculus and integral calculus. Differential calculus 
arose from the tangent problem, whereas integral calculus arose from a seemingly unrelated problem, 
the area problem. Newton's teacher at Cambridge, Isaac Barrow (1630-1677), discovered that these two 
problems are actually closely related. In fact, he realized that differentiation and integration are inverse 
processes. The Fundamental Theorem of Calculus gives the precise inverse relationship between the 
derivative and the integral. It was Newton and Leibnitz who exploited this relationship and used it to 
develop calculus into a systematic mathematical method. In particular, they saw that the Fundamental 
Theorem enabled them to compute areas and integrals very easily without having to compute them as 
limits of sums. 
 
The Fundamental Theorem of Calculus, Part 1 
If ?? is continuous on [?? , ?? ], then the function ?? defined by 
?? ( ?? ) = ? ?
?? ?? ??? ( ?? ) ???? ?? = ?? = ?? 
is continuous on [?? , ?? ] and differentiable on ( ?? , ?? ) , and ?? '
( ?? ) = ?? ( ?? ) . 
The Fundamental Theorem of Calculus, Part 2 
If ?? is continuous on [?? , ?? ], then 
? ?
?? ?? ??? ( ?? ) ???? = ?? ( ?? )- ?? ( ?? ) 
where ?? is any antiderivative of ?? , that is, a function such that ?? '
= ?? . 
Note: If ?
?? ?? ??? ( ?? ) ???? = 0 ? then the equation ?? ( ?? ) = 0 has atleast one root lying in ( ?? , ?? ) provided ?? is a 
continuous function in ( ?? , ?? ) . 
2. PROPERTIES OF DEFINITE INTEGRAL: 
Some properties which are quite useful while solving any kind of questions are: 
(a) ?
?? ?? ??? ( ?? ) ???? = ?
?? ?? ??? ( ?? ) ???? provided ?? is same 
(b) ?
?? ?? ??? ( ?? ) ???? = -?
?? ?? ??? ( ?? ) ???? 
(c) ?
?? ?? ??? ( ?? ) ???? = ?
?? ?? ??? ( ?? ) ???? + ?
?? ?? ??? ( ?? ) ???? , where c may lie inside or outside the interval [?? , ?? ]. This 
property is to be used when ?? is piecewise continuous in ( ?? , ?? ) . 
Problem1: If ?? ( ?? ) = {?? 2
, 0 < ?? < 2 3?? - 4,2 = ?? < 3  then evaluate ?
0
3
??? ( ?? ) ???? 
Solution:  ?
0
3
??? ( ?? ) ???? = ?
0
2
??? ( ?? ) ???? + ?
2
3
??? ( ?? ) ???? = ?
0
2
??? 2
???? + ?
2
3
?( 3?? - 4) ???? 
= (
?? 3
3
)
0
2
+ (
3?? 2
2
- 4?? )
2
3
=
8
3
+
27
2
- 12 - 6 + 8 = 37/6#( ?????? . )  
 
 
function) 
(A) -
11
2
 
(B) -
7
2
 
(C) -6 
(D) -
17
2
 
Solution:  3[?? ] - 5
|?? |
?? = 3[?? ] - 5, if ?? > 0 
= 3[?? ] + 5, if ?? < 0 
? ?
-3/2
2
??? ( ?? ) ???? = ?
-3/2
-1
?( -1) ???? + ?
-1
0
?( 2) ???? + ?
0
1
?( -5) ???? + ?
1
2
?( -2) ???? 
= -1 (-1 +
3
2
) + 2( 1)+ 1( -5)+ ( -2)= -
1
2
+ 2 - 5 - 2 = -
11
2
 
Ans. (A) 
Problem3: The value of ?
1
2
?( ?? [?? 2
]
+ [?? 2
]
?? ) ???? , where [.] denotes the greatest integer function, is equal to - 
(A) 
5
4
+ v3 + (2
v3
- 2
v2
) +
1
?????? 3
(9 - 3
v3
) 
(B) 
5
4
+ v3 +
v2
3
+
1
?????? 2
(2
v3
- 2
v2
) +
1
?????? 3
(9 - 3
v3
) 
(C) 
5
4
+
v2
3
+
1
?????? 2
(2
v3
- 2
v2
) +
1
?????? 3
(9 - 3
v3
) 
(D) none of these 
Solution: We have,  ?? = ?
1
2
?( ?? [?? 2
]
+ [?? 2
]
?? ) ???? = ?
1
v2
?( ?? + 1) ???? + ?
v2
v3
?( ?? 2
+ 2
?? ) ???? + ?
v3
2
?( ?? 3
+ 3
?? ) ???? 
  = (
?? 2
2
+ ?? )
1
v2
+ (
?? 3
3
+
2
?? ?????? 2
)
v2
v3
+ (
?? 4
4
+
3
?? ?????? 3
)
v3
2
  
Problem4: Evaluate: ?
-10
20
?[?????? -1
 ?? ]???? . Here [.] is the greatest integer function. 
Solution:  ?? = ?
-10
20
?[?????? -1
 ?? ]???? , we know ?????? -1
 ?? ? ( 0, ?? ) ??? ? ?? 
Thus [?????? -1
 ?? ] = {3, ?? ? ( -8, ?????? 3) 2, ?? ? ( ?????? 3, ?????? 2) 1, ?? ? ( ?????? 2, ?????? 1) 0 ?? ? ( ?????? 1, 8)  
Hence ?? = ?
-10
?????? 3
?3???? + ?
?????? 3
?????? 2
?2???? + ?
?????? 2
?????? 1
?1???? + ?
?????? 1
20
?0???? = 30 + ?????? 1 + ?????? 2 + ?????? 3 
Ans. 
Do yourself -1: 
Evaluate: 
(i) ?
0
3
?|?? 2
- ?? - 2|???? 
(ii) ?
0
4
?{?? }???? , where {.} ?????????????? ???????????????????? ???????? ?? . 
(iii) ?
0
?? /2
?|?????? ?? - ?????? ?? |???? 
(iv) If ?? ( ?? ) = {2 0 = ?? = 1 ?? + [?? ] 1 = ?? < 3 , where [.] denotes the greatest integer function. Evaluate 
?
0
2
??? ( ?? ) ???? 
(d) ?
-?? ?? ??? ( ?? ) ???? = ?
0
?? ?[?? ( ?? )+ ?? ( -?? ) ]???? =
[0 ; ???? ?? ( ?? ) ???? ???? ?????? ????????????????  2?
0
?? ??? ( ?? ) ???? ; ???? ?? ( ?? ) ???? ???? ???????? ????????????????   
Problem5: Evaluate ?
-1/2
1/2
??????? ?????? (
1+?? 1-?? )???? 
Solution:  ?? ( -?? ) = ?????? ( -?? ) ???? (
1-?? 1+?? ) = -?????? ???? (
1+?? 1-?? ) = -?? ( ?? ) 
? ?? ( ?? ) is odd 
Hence, the value of the given integral = 0. 
Problem6: If ?? ( ?? ) = |?????? ?? ?? ?? 2
 2?? ?????? 2
 ?? /2 ?? 2
 ?????? ?? ?????? ?? + ?? 3
 1 2 ?? + ?????? ?? |, then the value of 
?
-?? /2
?? /2
?( ?? 2
+ 1) ( ?? ( ?? )+ ?? ''
( ?? ) ) ???? 
(A) 1 
(B) -1 
(C) 2 
(D) none of these 
Solution:   As, ?? ( ?? ) = |?????? ?? ?? ?? 2
 2?? ?????? 2
 ?? /2 ?? 2
 ?????? ?? ?????? ?? + ?? 3
 1 2 ?? + ?????? ?? | 
  ? ?? ( -?? ) = -?? ( ?? ) ? ?? ( ?? ) ???? ??????    ? ?? '
( ?? ) ???? ????????  ? ?? ''
( ?? ) ???? ??????   
Thus, ?? ( ?? )+ ?? ''
( ?? ) is odd function let, 
 ?? ( ?? )= ( ?? 2
+ 1)· {?? ( ?? )+ ?? ''
( ?? ) } ?  ?? ( -?? ) = -?? ( ?? )  
i.e. ?? ( ?? ) is odd 
? ? ?
?? /2
-?? /2
???? ( ?? ) ???? = 0#( ?? )  
Problem7: If ?? , ?? , h be continuous functions on [0, ?? ] such that ?? ( ?? - ?? ) = -?? ( ?? ) , ?? ( ?? - ?? ) = ?? ( ?? ) and 
3h( ?? )- 4h( ?? - ?? )= 5, then prove that ?
0
?? ??? ( ?? ) ?? ( ?? ) h( ?? ) ???? = 0 
Solution:  ?? = ?
0
?? ??? ( ?? ) ?? ( ?? ) h( ?? ) ???? = ?
0
?? ??? ( ?? - ?? ) ?? ( ?? - ?? ) h( ?? - ?? ) ???? = -?
0
?? ??? ( ?? ) ?? ( ?? ) h( ?? - ?? ) ???? 7?? =
3?? + 4?? = ?
0
?? ??? ( ?? ) ?? ( ?? ) {3h( ?? )- 4h( ?? - ?? ) }???? = 5?
0
?? ??? ( ?? ) ?? ( ?? ) ???? = 0 
(since ?? ( ?? - ?? ) ?? ( ?? - ?? ) = -?? ( ?? ) ?? ( ?? ) ) 
? ?? = 0 
Problem8:   Evaluate ?
-?? ?? ?
???????? ?? ?? ?? +1
???? 
Solution:  ?? = ?
-?? 0
?
???????? ?? ?? ?? +1
???? + ?
0
?? ?
???????? ?? ?? ?? +1
???? = ?? 1
+ ?? 2
 
where ?? 1
= ?
-?? 0
?
???????? ?? ?? ?? +1
???? 
Page 5


DEFINITE INTEGRATION 
Imagine looking at the shadow cast by a tree at sunset. The length and shape of the shadow vary with 
the terrain and the tree's shape. To find the exact area of that shadow, we use the concept of the definite 
integral —a mathematical tool that calculates the area under a curve. 
A definite integral, written as ?
?? ?? ??? ( ?? ) ???? , measures the total area between a curve ?? ( ?? ) and the x-axis 
from ?? = ?? , ?? = ?? . This concept is crucial in fields like finance, where it helps quantify continuous 
change, track investments, and analyze economic trends, making it invaluable for informed decision-
making. 
1. THE FUNDAMENTAL THEOREM OF 
CALCULUS: 
The Fundamental Theorem of Calculus is appropriately named because it establishes a connection 
between the two branches of calculus: differential calculus and integral calculus. Differential calculus 
arose from the tangent problem, whereas integral calculus arose from a seemingly unrelated problem, 
the area problem. Newton's teacher at Cambridge, Isaac Barrow (1630-1677), discovered that these two 
problems are actually closely related. In fact, he realized that differentiation and integration are inverse 
processes. The Fundamental Theorem of Calculus gives the precise inverse relationship between the 
derivative and the integral. It was Newton and Leibnitz who exploited this relationship and used it to 
develop calculus into a systematic mathematical method. In particular, they saw that the Fundamental 
Theorem enabled them to compute areas and integrals very easily without having to compute them as 
limits of sums. 
 
The Fundamental Theorem of Calculus, Part 1 
If ?? is continuous on [?? , ?? ], then the function ?? defined by 
?? ( ?? ) = ? ?
?? ?? ??? ( ?? ) ???? ?? = ?? = ?? 
is continuous on [?? , ?? ] and differentiable on ( ?? , ?? ) , and ?? '
( ?? ) = ?? ( ?? ) . 
The Fundamental Theorem of Calculus, Part 2 
If ?? is continuous on [?? , ?? ], then 
? ?
?? ?? ??? ( ?? ) ???? = ?? ( ?? )- ?? ( ?? ) 
where ?? is any antiderivative of ?? , that is, a function such that ?? '
= ?? . 
Note: If ?
?? ?? ??? ( ?? ) ???? = 0 ? then the equation ?? ( ?? ) = 0 has atleast one root lying in ( ?? , ?? ) provided ?? is a 
continuous function in ( ?? , ?? ) . 
2. PROPERTIES OF DEFINITE INTEGRAL: 
Some properties which are quite useful while solving any kind of questions are: 
(a) ?
?? ?? ??? ( ?? ) ???? = ?
?? ?? ??? ( ?? ) ???? provided ?? is same 
(b) ?
?? ?? ??? ( ?? ) ???? = -?
?? ?? ??? ( ?? ) ???? 
(c) ?
?? ?? ??? ( ?? ) ???? = ?
?? ?? ??? ( ?? ) ???? + ?
?? ?? ??? ( ?? ) ???? , where c may lie inside or outside the interval [?? , ?? ]. This 
property is to be used when ?? is piecewise continuous in ( ?? , ?? ) . 
Problem1: If ?? ( ?? ) = {?? 2
, 0 < ?? < 2 3?? - 4,2 = ?? < 3  then evaluate ?
0
3
??? ( ?? ) ???? 
Solution:  ?
0
3
??? ( ?? ) ???? = ?
0
2
??? ( ?? ) ???? + ?
2
3
??? ( ?? ) ???? = ?
0
2
??? 2
???? + ?
2
3
?( 3?? - 4) ???? 
= (
?? 3
3
)
0
2
+ (
3?? 2
2
- 4?? )
2
3
=
8
3
+
27
2
- 12 - 6 + 8 = 37/6#( ?????? . )  
 
 
function) 
(A) -
11
2
 
(B) -
7
2
 
(C) -6 
(D) -
17
2
 
Solution:  3[?? ] - 5
|?? |
?? = 3[?? ] - 5, if ?? > 0 
= 3[?? ] + 5, if ?? < 0 
? ?
-3/2
2
??? ( ?? ) ???? = ?
-3/2
-1
?( -1) ???? + ?
-1
0
?( 2) ???? + ?
0
1
?( -5) ???? + ?
1
2
?( -2) ???? 
= -1 (-1 +
3
2
) + 2( 1)+ 1( -5)+ ( -2)= -
1
2
+ 2 - 5 - 2 = -
11
2
 
Ans. (A) 
Problem3: The value of ?
1
2
?( ?? [?? 2
]
+ [?? 2
]
?? ) ???? , where [.] denotes the greatest integer function, is equal to - 
(A) 
5
4
+ v3 + (2
v3
- 2
v2
) +
1
?????? 3
(9 - 3
v3
) 
(B) 
5
4
+ v3 +
v2
3
+
1
?????? 2
(2
v3
- 2
v2
) +
1
?????? 3
(9 - 3
v3
) 
(C) 
5
4
+
v2
3
+
1
?????? 2
(2
v3
- 2
v2
) +
1
?????? 3
(9 - 3
v3
) 
(D) none of these 
Solution: We have,  ?? = ?
1
2
?( ?? [?? 2
]
+ [?? 2
]
?? ) ???? = ?
1
v2
?( ?? + 1) ???? + ?
v2
v3
?( ?? 2
+ 2
?? ) ???? + ?
v3
2
?( ?? 3
+ 3
?? ) ???? 
  = (
?? 2
2
+ ?? )
1
v2
+ (
?? 3
3
+
2
?? ?????? 2
)
v2
v3
+ (
?? 4
4
+
3
?? ?????? 3
)
v3
2
  
Problem4: Evaluate: ?
-10
20
?[?????? -1
 ?? ]???? . Here [.] is the greatest integer function. 
Solution:  ?? = ?
-10
20
?[?????? -1
 ?? ]???? , we know ?????? -1
 ?? ? ( 0, ?? ) ??? ? ?? 
Thus [?????? -1
 ?? ] = {3, ?? ? ( -8, ?????? 3) 2, ?? ? ( ?????? 3, ?????? 2) 1, ?? ? ( ?????? 2, ?????? 1) 0 ?? ? ( ?????? 1, 8)  
Hence ?? = ?
-10
?????? 3
?3???? + ?
?????? 3
?????? 2
?2???? + ?
?????? 2
?????? 1
?1???? + ?
?????? 1
20
?0???? = 30 + ?????? 1 + ?????? 2 + ?????? 3 
Ans. 
Do yourself -1: 
Evaluate: 
(i) ?
0
3
?|?? 2
- ?? - 2|???? 
(ii) ?
0
4
?{?? }???? , where {.} ?????????????? ???????????????????? ???????? ?? . 
(iii) ?
0
?? /2
?|?????? ?? - ?????? ?? |???? 
(iv) If ?? ( ?? ) = {2 0 = ?? = 1 ?? + [?? ] 1 = ?? < 3 , where [.] denotes the greatest integer function. Evaluate 
?
0
2
??? ( ?? ) ???? 
(d) ?
-?? ?? ??? ( ?? ) ???? = ?
0
?? ?[?? ( ?? )+ ?? ( -?? ) ]???? =
[0 ; ???? ?? ( ?? ) ???? ???? ?????? ????????????????  2?
0
?? ??? ( ?? ) ???? ; ???? ?? ( ?? ) ???? ???? ???????? ????????????????   
Problem5: Evaluate ?
-1/2
1/2
??????? ?????? (
1+?? 1-?? )???? 
Solution:  ?? ( -?? ) = ?????? ( -?? ) ???? (
1-?? 1+?? ) = -?????? ???? (
1+?? 1-?? ) = -?? ( ?? ) 
? ?? ( ?? ) is odd 
Hence, the value of the given integral = 0. 
Problem6: If ?? ( ?? ) = |?????? ?? ?? ?? 2
 2?? ?????? 2
 ?? /2 ?? 2
 ?????? ?? ?????? ?? + ?? 3
 1 2 ?? + ?????? ?? |, then the value of 
?
-?? /2
?? /2
?( ?? 2
+ 1) ( ?? ( ?? )+ ?? ''
( ?? ) ) ???? 
(A) 1 
(B) -1 
(C) 2 
(D) none of these 
Solution:   As, ?? ( ?? ) = |?????? ?? ?? ?? 2
 2?? ?????? 2
 ?? /2 ?? 2
 ?????? ?? ?????? ?? + ?? 3
 1 2 ?? + ?????? ?? | 
  ? ?? ( -?? ) = -?? ( ?? ) ? ?? ( ?? ) ???? ??????    ? ?? '
( ?? ) ???? ????????  ? ?? ''
( ?? ) ???? ??????   
Thus, ?? ( ?? )+ ?? ''
( ?? ) is odd function let, 
 ?? ( ?? )= ( ?? 2
+ 1)· {?? ( ?? )+ ?? ''
( ?? ) } ?  ?? ( -?? ) = -?? ( ?? )  
i.e. ?? ( ?? ) is odd 
? ? ?
?? /2
-?? /2
???? ( ?? ) ???? = 0#( ?? )  
Problem7: If ?? , ?? , h be continuous functions on [0, ?? ] such that ?? ( ?? - ?? ) = -?? ( ?? ) , ?? ( ?? - ?? ) = ?? ( ?? ) and 
3h( ?? )- 4h( ?? - ?? )= 5, then prove that ?
0
?? ??? ( ?? ) ?? ( ?? ) h( ?? ) ???? = 0 
Solution:  ?? = ?
0
?? ??? ( ?? ) ?? ( ?? ) h( ?? ) ???? = ?
0
?? ??? ( ?? - ?? ) ?? ( ?? - ?? ) h( ?? - ?? ) ???? = -?
0
?? ??? ( ?? ) ?? ( ?? ) h( ?? - ?? ) ???? 7?? =
3?? + 4?? = ?
0
?? ??? ( ?? ) ?? ( ?? ) {3h( ?? )- 4h( ?? - ?? ) }???? = 5?
0
?? ??? ( ?? ) ?? ( ?? ) ???? = 0 
(since ?? ( ?? - ?? ) ?? ( ?? - ?? ) = -?? ( ?? ) ?? ( ?? ) ) 
? ?? = 0 
Problem8:   Evaluate ?
-?? ?? ?
???????? ?? ?? ?? +1
???? 
Solution:  ?? = ?
-?? 0
?
???????? ?? ?? ?? +1
???? + ?
0
?? ?
???????? ?? ?? ?? +1
???? = ?? 1
+ ?? 2
 
where ?? 1
= ?
-?? 0
?
???????? ?? ?? ?? +1
???? 
Put ?? = -?? ? ???? = -???? 
? ?? 1
= ?
?? 0
?
( -?? ) ?????? ( -?? ) ( -???? )
?? -?? + 1
= ?
0
?? ?
???????? ?????? ?? -?? + 1
= ?
0
?? ?
?? ?? ???????? ?????? ?? ?? + 1
= ?
0
?? ?
?? ?? ???????? ?????? ?? ?? + 1
 
Hence ?? = ?? 1
+ ?? 2
= ?
0
?? ?
?? ?? ???????? ?? ?? ?? +1
???? + ?
0
?? ?
???????? ?? ?? ?? +1
???? 
?? = ?
0
?? ????????? ?????? = ?
0
?? ?( ?? - ?? ) ?????? ( ?? - ?? ) ???? = ?? ?
0
?? ??????? ?????? - ?? 
? 2?? = ?? ?
0
?? ??????? ?????? = ?? | - ?????? ?? |
0
?? = 2?? ? ?? = ?? 
Problem9: Evaluate ?
0
2
?
????
( 17+8?? -4?? 2
) [?? 6( 1-?? )
+1]
 
Solution:   Let ?? = ?
0
2
?
????
( 17+8?? -4?? 2
) [?? 6( 1-?? )
+1]
 
Also ?? = ?
0
2
?
????
( 17+8?? -4?? 2
) [?? -6( 1-?? )
+1]
[? ?
0
?? ??? ( ?? ) ???? = ?
0
?? ??? ( ?? - ?? ) ???? ] 
Adding, we get 
2??  = ? ?
2
0
??
1
17 + 8?? - 4?? 2
(
1
?? 6( 1-?? )
+ 1
+
1
?? -6( 1-?? )
+ 1
)????   = ? ?
2
0
??
1
17 + 8?? - 4?? 2
????
= -
1
4
? ?
2
0
??
????
?? 2
- 2?? - 17/4
   = -
1
4
? ?
2
0
??
????
( ?? - 1)
2
- 21/4
= -
1
4
×
1
2 ×
v 21
2
[?????? |
?? - 1 -
v 21
2
?? - 1 +
v 21
2
|]
0
2
   = -
1
4v 21
[?????? |
2?? - 2 - v 21
2?? - 2 + v 21
|]
0
2
? ?? = -
1
8v 21
[?????? |
2 - v 21
2 + v 21
| - ?????? |
2 + v 21
v 21 - 2
|]   = -
1
4v 21
[?????? |
v 21 - 2
2 + v 21
|]  
Problem10:  ?
0
1
??????? -1
 ( 1 - ?? + ?? 2
) ???? equals - 
(A) 
?? 2
+ ?????? 2 
(B) 
?? 2
- ?????? 2 
(C) ?? - ?????? 2 
(D) none of these 
Solution:  ?? = ?
0
1
??????? -1
 (
1
1-?? +?? 2
)???? = ?
0
1
??????? -1
 (
?? +( 1-?? )
1-?? ( 1-?? )
)???? 
  = ? ?
1
0
??[?????? -1
 ?? + ?????? -1
 ( 1 - ?? ) ]???? = ? ?
1
0
???????? -1
 ?????? + ? ?
1
0
???????? -1
 ( 1 - ?? ) ????  
Problem11: ?
0
?? /2
?
???????? ?? +???????? ?? ?????? ?? +?????? ?? ???? 
Solution:  ?? = ?
0
?? /2
?
???????? ?? +???????? ?? ?????? ?? +?????? ?? ???? 
Read More
209 videos|443 docs|143 tests

Top Courses for JEE

209 videos|443 docs|143 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

video lectures

,

shortcuts and tricks

,

Exam

,

Important questions

,

Sample Paper

,

Summary

,

mock tests for examination

,

Previous Year Questions with Solutions

,

ppt

,

Detailed Notes: Definite Integral | Mathematics (Maths) for JEE Main & Advanced

,

Free

,

study material

,

Semester Notes

,

pdf

,

Viva Questions

,

Objective type Questions

,

practice quizzes

,

Detailed Notes: Definite Integral | Mathematics (Maths) for JEE Main & Advanced

,

past year papers

,

Extra Questions

,

Detailed Notes: Definite Integral | Mathematics (Maths) for JEE Main & Advanced

,

MCQs

;