Page 1
240 Binomial Theorem
6.1.1 Binomial Expression.
An algebraic expression consisting of two terms with +ve or – ve sign between them is
called a binomial expression.
For example :
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
? ? ?
3 4 2
4 1
, ), 3 2 ( ), (
y x x
q
x
p
y x b a etc.
6.1.2 Binomial Theorem for Positive Integral Index .
The rule by which any power of binomial can be expanded is called the binomial theorem.
If n is a positive integer and x, C y ? then
n
n
n n
n
n r r n
r
n n n n n n n n
y x C xy C y x C y x C y x C y x C y x
0 1
1
2 2
2
1 1
1
0 0
0
...... ........ ) ( ? ? ? ? ? ? ? ? ?
?
?
? ? ? ?
i.e.,
?
?
?
? ?
n
r
r r n
r
n n
y x C y x
0
. . ) ( .....(i)
Here
n
n n n n
C C C C ,...... , ,
2 1 0
are called binomial coefficients and
! ) ( !
!
r n r
n
C
r
n
?
? for n r ? ? 0 .
Important Tips
? The number of terms in the expansion of
n
y x ) ( ? are (n + 1).
? The expansion contains decreasing power of x and increasing power of y. The sum of the powers of x and y in each
term is equal to n.
? The binomial coefficients ........ , ,
2 1 0
C C C
n n n
equidistant from beginning and end are equal i.e.,
r n
n
r
n
C C
?
? .
? ? ?
n
y x ) ( Sum of odd terms + sum of even terms.
6.1.3 Some Important Expansions .
(1) Replacing y by – y in (i), we get,
?
y x C y x C y x C y x C y x C y x
n
n n r r n
r
n r n n n n n n n
. ) 1 ( .... . ) 1 ( .... . . . ) (
0 2 2
2
1 1
1
0 0
0
? ? ? ? ? ? ? ? ?
? ? ? ?
i.e.,
?
?
?
? ? ?
n
r
r r n
r
n r n
y x C y x
0
. ) 1 ( ) ( .....(ii)
The terms in the expansion of
n
y x ) ( ? are alternatively positive and negative, the last term
is positive or negative according as n is even or odd.
(2) Replacing x by 1 and y by x in equation (i) we get,
n
n
n r
r
n n n n n
x C x C x C x C x C x ? ? ? ? ? ? ? ? ...... ...... ) 1 (
2
2
1
1
0
0
i.e.,
?
?
? ?
n
r
r
r
n n
x C x
0
) 1 (
This is expansion of
n
x) 1 ( ? in ascending power of x.
240
Page 2
240 Binomial Theorem
6.1.1 Binomial Expression.
An algebraic expression consisting of two terms with +ve or – ve sign between them is
called a binomial expression.
For example :
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
? ? ?
3 4 2
4 1
, ), 3 2 ( ), (
y x x
q
x
p
y x b a etc.
6.1.2 Binomial Theorem for Positive Integral Index .
The rule by which any power of binomial can be expanded is called the binomial theorem.
If n is a positive integer and x, C y ? then
n
n
n n
n
n r r n
r
n n n n n n n n
y x C xy C y x C y x C y x C y x C y x
0 1
1
2 2
2
1 1
1
0 0
0
...... ........ ) ( ? ? ? ? ? ? ? ? ?
?
?
? ? ? ?
i.e.,
?
?
?
? ?
n
r
r r n
r
n n
y x C y x
0
. . ) ( .....(i)
Here
n
n n n n
C C C C ,...... , ,
2 1 0
are called binomial coefficients and
! ) ( !
!
r n r
n
C
r
n
?
? for n r ? ? 0 .
Important Tips
? The number of terms in the expansion of
n
y x ) ( ? are (n + 1).
? The expansion contains decreasing power of x and increasing power of y. The sum of the powers of x and y in each
term is equal to n.
? The binomial coefficients ........ , ,
2 1 0
C C C
n n n
equidistant from beginning and end are equal i.e.,
r n
n
r
n
C C
?
? .
? ? ?
n
y x ) ( Sum of odd terms + sum of even terms.
6.1.3 Some Important Expansions .
(1) Replacing y by – y in (i), we get,
?
y x C y x C y x C y x C y x C y x
n
n n r r n
r
n r n n n n n n n
. ) 1 ( .... . ) 1 ( .... . . . ) (
0 2 2
2
1 1
1
0 0
0
? ? ? ? ? ? ? ? ?
? ? ? ?
i.e.,
?
?
?
? ? ?
n
r
r r n
r
n r n
y x C y x
0
. ) 1 ( ) ( .....(ii)
The terms in the expansion of
n
y x ) ( ? are alternatively positive and negative, the last term
is positive or negative according as n is even or odd.
(2) Replacing x by 1 and y by x in equation (i) we get,
n
n
n r
r
n n n n n
x C x C x C x C x C x ? ? ? ? ? ? ? ? ...... ...... ) 1 (
2
2
1
1
0
0
i.e.,
?
?
? ?
n
r
r
r
n n
x C x
0
) 1 (
This is expansion of
n
x) 1 ( ? in ascending power of x.
240
Binomial Theorem 241
(3) Replacing x by 1 and y by – x in (i) we get,
n
n
n n r
r
n r n n n n
x C x C x C x C x C x ) 1 ( .... ) 1 ( ...... ) 1 (
2
2
1
1
0
0
? ? ? ? ? ? ? ? ? ? i.e.,
?
?
? ? ?
n
r
r
r
n r n
x C x
0
) 1 ( ) 1 (
(4) .......] [ 2 ) ( ) (
4 4
4
2 2
2
0
0
? ? ? ? ? ? ?
? ?
y x C y x C y x C y x y x
n n n n n n n n
and
.......] [ 2 ) ( ) (
5 5
5
3 3
3
1 1
1
? ? ? ? ? ? ?
? ? ?
y x C y x C y x C y x y x
n n n n n n n n
(5) The coefficient of
th
r ) 1 ( ? term in the expansion of
n
x) 1 ( ? is
r
n
C .
(6) The coefficient of
r
x in the expansion of
n
x) 1 ( ? is
r
n
C .
Note : ? If n is odd, then
n n
y x y x ) ( ) ( ? ? ? and
n n
y x y x ) ( ) ( ? ? ? , both have the same number of
terms equal to .
2
1
?
?
?
?
?
? ? n
? If n is even, then
n n
y x y x ) ( ) ( ? ? ? has ?
?
?
?
?
?
?1
2
n
terms and
n n
y x y x ) ( ) ( ? ? ? has
2
n
terms.
Example: 1 ? ? ? ? ? ?
5 4 3 2 2 3 4 5
32 80 80 40 10 a xa a x a x a x x
(a)
5
) ( a x ? (b)
5
) 3 ( a x ? (c)
5
) 2 ( a x ? (d)
3
) 2 ( a x ?
Solution: (c) Conversely
n
n
n n n n n n n
y x C y x C y x C C y x
0 2 2
2
1 1
1 0
.... ) ( ? ? ? ? ? ?
? ?
5
) 2 ( a x ? =
5 0
5
5 4 1
4
5 3 2
3
5 2 3
2
5 1 4
1
5 5
0
5
) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( a x C a x C a x C a x C a x C x C ? ? ? ? ?
=
5 4 3 2 2 3 4 5
32 80 80 40 10 a xa a x a x a x x ? ? ? ? ? .
Example: 2 The value of
6 6
) 1 2 ( ) 1 2 ( ? ? ? will be
(a) – 198 (b) 198 (c) 98 (d) – 99
Solution: (b) We know that, .....] [ 2 ) ( ) (
4 4
4
2 2
2
? ? ? ? ? ? ?
? ?
y x C y x C x y x y x
n n n n n n n
] ) 1 ( ) 2 ( ) 1 ( ) 2 ( ) 1 ( ) 2 ( ) 2 [( 2 ) 1 2 ( ) 1 2 (
6 0
6
6 4 2
4
6 2 4
2
6 6 6 6
C C C ? ? ? ? ? ? ? = 198 ] 1 30 4 15 8 [ 2 ? ? ? ? ?
Example: 3 The larger of
50 50
100 99 ? and
50
101 is [IIT 1980]
(a)
50 50
100 99 ? (b) Both are equal (c)
50
101 (d) None of these
Solution: (c) We have, ? ? ? ? ? ?
48 49 50 50 50
100
1 . 2
49 . 50
100 . 50 100 ) 1 100 ( 101 .....(i)
and ....... 100
1 . 2
49 . 50
100 . 50 100 ) 1 100 ( 99
48 49 50 50 50
? ? ? ? ? ? ..... (ii)
Subtracting,
50 47 50 50 50
100 ..... 100
1 . 2 . 3
48 . 49 . 50
. 2 100 99 101 ? ? ? ? ? . Hence
50 50 50
99 100 101 ? ? .
Example: 4 Sum of odd terms is A and sum of even terms is B in the expansion of
n
a x ) ( ? , then [Rajasthan PET 1987]
(a)
n n
a x a x AB
2 2
) ( ) (
4
1
? ? ? ? (b)
n n
a x a x AB
2 2
) ( ) ( 2 ? ? ? ?
(c)
n n
a x a x AB
2 2
) ( ) ( 4 ? ? ? ? (d) None of these
Solution: (c) ? ? ? ? ? ? ?
? ? ? n n n
n
n n n n n n n n
a x C a x C a x C x C a x . ... ) (
2 2
2
1 1
1 0
B A a x C a x C a x C x
n n n n n n n
? ? ? ? ? ? ?
? ? ?
....) ( ..) (
3 3
3
1 1
1
2 2
2
.....(i)
Similarly, B A a x
n
? ? ? ) ( .....(ii)
From (i) and (ii), we get
n n
a x a x AB
2 2
) ( ) ( 4 ? ? ? ?
Trick: Put 1 ? n in
n
a x ) ( ? . Then, B A a x ? ? ? . Comparing both sides a B x A ? ? , .
Option (c) L.H.S. xa AB 4 4 ? , R.H.S. ax a x a x 4 ) ( ) (
2 2
? ? ? ? . i.e., L.H.S. = R.H.S
6.1.4 General Term .
n
n
n r r n
r
n n n n n n n n
y x C y x C y x C y x C y x C y x
0 2 2
2
1 1
1
0
0
.... ..... ) ( ? ? ? ? ? ? ? ?
? ? ?
Page 3
240 Binomial Theorem
6.1.1 Binomial Expression.
An algebraic expression consisting of two terms with +ve or – ve sign between them is
called a binomial expression.
For example :
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
? ? ?
3 4 2
4 1
, ), 3 2 ( ), (
y x x
q
x
p
y x b a etc.
6.1.2 Binomial Theorem for Positive Integral Index .
The rule by which any power of binomial can be expanded is called the binomial theorem.
If n is a positive integer and x, C y ? then
n
n
n n
n
n r r n
r
n n n n n n n n
y x C xy C y x C y x C y x C y x C y x
0 1
1
2 2
2
1 1
1
0 0
0
...... ........ ) ( ? ? ? ? ? ? ? ? ?
?
?
? ? ? ?
i.e.,
?
?
?
? ?
n
r
r r n
r
n n
y x C y x
0
. . ) ( .....(i)
Here
n
n n n n
C C C C ,...... , ,
2 1 0
are called binomial coefficients and
! ) ( !
!
r n r
n
C
r
n
?
? for n r ? ? 0 .
Important Tips
? The number of terms in the expansion of
n
y x ) ( ? are (n + 1).
? The expansion contains decreasing power of x and increasing power of y. The sum of the powers of x and y in each
term is equal to n.
? The binomial coefficients ........ , ,
2 1 0
C C C
n n n
equidistant from beginning and end are equal i.e.,
r n
n
r
n
C C
?
? .
? ? ?
n
y x ) ( Sum of odd terms + sum of even terms.
6.1.3 Some Important Expansions .
(1) Replacing y by – y in (i), we get,
?
y x C y x C y x C y x C y x C y x
n
n n r r n
r
n r n n n n n n n
. ) 1 ( .... . ) 1 ( .... . . . ) (
0 2 2
2
1 1
1
0 0
0
? ? ? ? ? ? ? ? ?
? ? ? ?
i.e.,
?
?
?
? ? ?
n
r
r r n
r
n r n
y x C y x
0
. ) 1 ( ) ( .....(ii)
The terms in the expansion of
n
y x ) ( ? are alternatively positive and negative, the last term
is positive or negative according as n is even or odd.
(2) Replacing x by 1 and y by x in equation (i) we get,
n
n
n r
r
n n n n n
x C x C x C x C x C x ? ? ? ? ? ? ? ? ...... ...... ) 1 (
2
2
1
1
0
0
i.e.,
?
?
? ?
n
r
r
r
n n
x C x
0
) 1 (
This is expansion of
n
x) 1 ( ? in ascending power of x.
240
Binomial Theorem 241
(3) Replacing x by 1 and y by – x in (i) we get,
n
n
n n r
r
n r n n n n
x C x C x C x C x C x ) 1 ( .... ) 1 ( ...... ) 1 (
2
2
1
1
0
0
? ? ? ? ? ? ? ? ? ? i.e.,
?
?
? ? ?
n
r
r
r
n r n
x C x
0
) 1 ( ) 1 (
(4) .......] [ 2 ) ( ) (
4 4
4
2 2
2
0
0
? ? ? ? ? ? ?
? ?
y x C y x C y x C y x y x
n n n n n n n n
and
.......] [ 2 ) ( ) (
5 5
5
3 3
3
1 1
1
? ? ? ? ? ? ?
? ? ?
y x C y x C y x C y x y x
n n n n n n n n
(5) The coefficient of
th
r ) 1 ( ? term in the expansion of
n
x) 1 ( ? is
r
n
C .
(6) The coefficient of
r
x in the expansion of
n
x) 1 ( ? is
r
n
C .
Note : ? If n is odd, then
n n
y x y x ) ( ) ( ? ? ? and
n n
y x y x ) ( ) ( ? ? ? , both have the same number of
terms equal to .
2
1
?
?
?
?
?
? ? n
? If n is even, then
n n
y x y x ) ( ) ( ? ? ? has ?
?
?
?
?
?
?1
2
n
terms and
n n
y x y x ) ( ) ( ? ? ? has
2
n
terms.
Example: 1 ? ? ? ? ? ?
5 4 3 2 2 3 4 5
32 80 80 40 10 a xa a x a x a x x
(a)
5
) ( a x ? (b)
5
) 3 ( a x ? (c)
5
) 2 ( a x ? (d)
3
) 2 ( a x ?
Solution: (c) Conversely
n
n
n n n n n n n
y x C y x C y x C C y x
0 2 2
2
1 1
1 0
.... ) ( ? ? ? ? ? ?
? ?
5
) 2 ( a x ? =
5 0
5
5 4 1
4
5 3 2
3
5 2 3
2
5 1 4
1
5 5
0
5
) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( a x C a x C a x C a x C a x C x C ? ? ? ? ?
=
5 4 3 2 2 3 4 5
32 80 80 40 10 a xa a x a x a x x ? ? ? ? ? .
Example: 2 The value of
6 6
) 1 2 ( ) 1 2 ( ? ? ? will be
(a) – 198 (b) 198 (c) 98 (d) – 99
Solution: (b) We know that, .....] [ 2 ) ( ) (
4 4
4
2 2
2
? ? ? ? ? ? ?
? ?
y x C y x C x y x y x
n n n n n n n
] ) 1 ( ) 2 ( ) 1 ( ) 2 ( ) 1 ( ) 2 ( ) 2 [( 2 ) 1 2 ( ) 1 2 (
6 0
6
6 4 2
4
6 2 4
2
6 6 6 6
C C C ? ? ? ? ? ? ? = 198 ] 1 30 4 15 8 [ 2 ? ? ? ? ?
Example: 3 The larger of
50 50
100 99 ? and
50
101 is [IIT 1980]
(a)
50 50
100 99 ? (b) Both are equal (c)
50
101 (d) None of these
Solution: (c) We have, ? ? ? ? ? ?
48 49 50 50 50
100
1 . 2
49 . 50
100 . 50 100 ) 1 100 ( 101 .....(i)
and ....... 100
1 . 2
49 . 50
100 . 50 100 ) 1 100 ( 99
48 49 50 50 50
? ? ? ? ? ? ..... (ii)
Subtracting,
50 47 50 50 50
100 ..... 100
1 . 2 . 3
48 . 49 . 50
. 2 100 99 101 ? ? ? ? ? . Hence
50 50 50
99 100 101 ? ? .
Example: 4 Sum of odd terms is A and sum of even terms is B in the expansion of
n
a x ) ( ? , then [Rajasthan PET 1987]
(a)
n n
a x a x AB
2 2
) ( ) (
4
1
? ? ? ? (b)
n n
a x a x AB
2 2
) ( ) ( 2 ? ? ? ?
(c)
n n
a x a x AB
2 2
) ( ) ( 4 ? ? ? ? (d) None of these
Solution: (c) ? ? ? ? ? ? ?
? ? ? n n n
n
n n n n n n n n
a x C a x C a x C x C a x . ... ) (
2 2
2
1 1
1 0
B A a x C a x C a x C x
n n n n n n n
? ? ? ? ? ? ?
? ? ?
....) ( ..) (
3 3
3
1 1
1
2 2
2
.....(i)
Similarly, B A a x
n
? ? ? ) ( .....(ii)
From (i) and (ii), we get
n n
a x a x AB
2 2
) ( ) ( 4 ? ? ? ?
Trick: Put 1 ? n in
n
a x ) ( ? . Then, B A a x ? ? ? . Comparing both sides a B x A ? ? , .
Option (c) L.H.S. xa AB 4 4 ? , R.H.S. ax a x a x 4 ) ( ) (
2 2
? ? ? ? . i.e., L.H.S. = R.H.S
6.1.4 General Term .
n
n
n r r n
r
n n n n n n n n
y x C y x C y x C y x C y x C y x
0 2 2
2
1 1
1
0
0
.... ..... ) ( ? ? ? ? ? ? ? ?
? ? ?
242 Binomial Theorem
The first term =
0
0
y x C
n n
The second term =
1 1
1
y x C
n n ?
. The third term =
2 2
2
y x C
n n ?
and so on
The term
r r n
r
n
y x C
?
is the
th
r ) 1 ( ? term from beginning in the expansion of
n
y x ) ( ? .
Let
1 ? r
T denote the (r + 1)
th
term ?
r r n
r
n
r
y x C T
?
?
?
1
This is called general term, because by giving different values to r, we can determine all
terms of the expansion.
In the binomial expansion of
r r n
r
n r
r
n
y x C T y x
?
?
? ? ? ) 1 ( , ) (
1
In the binomial expansion of
r
r
n
r
n
x C T x ? ?
?1
, ) 1 (
In the binomial expansion of
r
r
n r
r
n
x C T x ) 1 ( , ) 1 (
1
? ? ?
?
Note : ? In the binomial expansion of
n
y x ) ( ? , the p
th
term from the end is
th
p n ) 2 ( ? ? term
from beginning.
Important Tips
? In the expansion of N n y x
n
? ? , ) (
x
y
r
r n
T
T
r
r
?
?
?
?
?
? ? ?
?
?
1
1
? The coefficient of
1 ? n
x in the expansion of
2
) 1 (
) ).......( 2 )( 1 (
?
? ? ? ? ?
n n
n x x x
? The coefficient of
1 ? n
x in the expansion of
2
) 1 (
) ).....( 2 )( 1 (
?
? ? ? ?
n n
n x x x
Example: 5 If the 4
th
term in the expansion of
m
x px ) (
1 ?
? is 2.5 for all R x ? then
(a) 3 , 2 / 5 ? ? m p (b) 6 ,
2
1
? ? m p (c) 6 ,
2
1
? ? ? m p (d) None of these
Solution: (b) We have
2
5
4
? T ?
2
5
1 3
?
?
T ?
2
5
2
5 1
) (
6 3
3
3
3
3
? ? ? ?
?
?
?
?
?
? ? ? m m m m m
x p C
x
px C .......(i)
Clearly, R.H.S. of the above equality is independent of x
? 0 6 ? ? m , 6 ? m
Putting 6 ? m in (i) we get ? ?
2
5
3
3
6
p C
2
1
? p . Hence 6 , 2 / 1 ? ? m p .
Example: 6 If the second, third and fourth term in the expansion of
n
a x ) ( ? are 240, 720 and 1080 respectively,
then the value of n is
[Kurukshetra CEE 1991; DCE 1995, 2001]
(a) 15 (b) 20 (c) 10 (d) 5
Solution: (d) It is given that 1080 , 720 , 240
4 3 2
? ? ? T T T
Now, 240
2
? T ? 240
1 1
1 2
? ?
?
a x C T
n n
.....(i) and 720
3
? T ? 720
2 2
2 3
? ?
?
a x C T
n n
.....(ii)
1080
4
? T ? 1080
3 3
3 4
? ?
?
a x C T
n n
.....(iii)
To eliminate x,
2
1
720 . 720
1080 . 240 .
2
3
4 2
? ?
T
T T
?
2
1
.
3
4
3
2
?
T
T
T
T
.
Now
r
r n
C
C
T
T
r
n
r
n
r
r
1
1
1
? ?
? ?
?
?
. Putting 3 ? r and 2 in above expression, we get
2
1
1
2
.
3
2
?
?
?
n
n
? 5 ? n
Example: 7 The 5
th
term from the end in the expansion of
9
3
3
2
2
?
?
?
?
?
?
?
?
?
x
x
is
Page 4
240 Binomial Theorem
6.1.1 Binomial Expression.
An algebraic expression consisting of two terms with +ve or – ve sign between them is
called a binomial expression.
For example :
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
? ? ?
3 4 2
4 1
, ), 3 2 ( ), (
y x x
q
x
p
y x b a etc.
6.1.2 Binomial Theorem for Positive Integral Index .
The rule by which any power of binomial can be expanded is called the binomial theorem.
If n is a positive integer and x, C y ? then
n
n
n n
n
n r r n
r
n n n n n n n n
y x C xy C y x C y x C y x C y x C y x
0 1
1
2 2
2
1 1
1
0 0
0
...... ........ ) ( ? ? ? ? ? ? ? ? ?
?
?
? ? ? ?
i.e.,
?
?
?
? ?
n
r
r r n
r
n n
y x C y x
0
. . ) ( .....(i)
Here
n
n n n n
C C C C ,...... , ,
2 1 0
are called binomial coefficients and
! ) ( !
!
r n r
n
C
r
n
?
? for n r ? ? 0 .
Important Tips
? The number of terms in the expansion of
n
y x ) ( ? are (n + 1).
? The expansion contains decreasing power of x and increasing power of y. The sum of the powers of x and y in each
term is equal to n.
? The binomial coefficients ........ , ,
2 1 0
C C C
n n n
equidistant from beginning and end are equal i.e.,
r n
n
r
n
C C
?
? .
? ? ?
n
y x ) ( Sum of odd terms + sum of even terms.
6.1.3 Some Important Expansions .
(1) Replacing y by – y in (i), we get,
?
y x C y x C y x C y x C y x C y x
n
n n r r n
r
n r n n n n n n n
. ) 1 ( .... . ) 1 ( .... . . . ) (
0 2 2
2
1 1
1
0 0
0
? ? ? ? ? ? ? ? ?
? ? ? ?
i.e.,
?
?
?
? ? ?
n
r
r r n
r
n r n
y x C y x
0
. ) 1 ( ) ( .....(ii)
The terms in the expansion of
n
y x ) ( ? are alternatively positive and negative, the last term
is positive or negative according as n is even or odd.
(2) Replacing x by 1 and y by x in equation (i) we get,
n
n
n r
r
n n n n n
x C x C x C x C x C x ? ? ? ? ? ? ? ? ...... ...... ) 1 (
2
2
1
1
0
0
i.e.,
?
?
? ?
n
r
r
r
n n
x C x
0
) 1 (
This is expansion of
n
x) 1 ( ? in ascending power of x.
240
Binomial Theorem 241
(3) Replacing x by 1 and y by – x in (i) we get,
n
n
n n r
r
n r n n n n
x C x C x C x C x C x ) 1 ( .... ) 1 ( ...... ) 1 (
2
2
1
1
0
0
? ? ? ? ? ? ? ? ? ? i.e.,
?
?
? ? ?
n
r
r
r
n r n
x C x
0
) 1 ( ) 1 (
(4) .......] [ 2 ) ( ) (
4 4
4
2 2
2
0
0
? ? ? ? ? ? ?
? ?
y x C y x C y x C y x y x
n n n n n n n n
and
.......] [ 2 ) ( ) (
5 5
5
3 3
3
1 1
1
? ? ? ? ? ? ?
? ? ?
y x C y x C y x C y x y x
n n n n n n n n
(5) The coefficient of
th
r ) 1 ( ? term in the expansion of
n
x) 1 ( ? is
r
n
C .
(6) The coefficient of
r
x in the expansion of
n
x) 1 ( ? is
r
n
C .
Note : ? If n is odd, then
n n
y x y x ) ( ) ( ? ? ? and
n n
y x y x ) ( ) ( ? ? ? , both have the same number of
terms equal to .
2
1
?
?
?
?
?
? ? n
? If n is even, then
n n
y x y x ) ( ) ( ? ? ? has ?
?
?
?
?
?
?1
2
n
terms and
n n
y x y x ) ( ) ( ? ? ? has
2
n
terms.
Example: 1 ? ? ? ? ? ?
5 4 3 2 2 3 4 5
32 80 80 40 10 a xa a x a x a x x
(a)
5
) ( a x ? (b)
5
) 3 ( a x ? (c)
5
) 2 ( a x ? (d)
3
) 2 ( a x ?
Solution: (c) Conversely
n
n
n n n n n n n
y x C y x C y x C C y x
0 2 2
2
1 1
1 0
.... ) ( ? ? ? ? ? ?
? ?
5
) 2 ( a x ? =
5 0
5
5 4 1
4
5 3 2
3
5 2 3
2
5 1 4
1
5 5
0
5
) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( a x C a x C a x C a x C a x C x C ? ? ? ? ?
=
5 4 3 2 2 3 4 5
32 80 80 40 10 a xa a x a x a x x ? ? ? ? ? .
Example: 2 The value of
6 6
) 1 2 ( ) 1 2 ( ? ? ? will be
(a) – 198 (b) 198 (c) 98 (d) – 99
Solution: (b) We know that, .....] [ 2 ) ( ) (
4 4
4
2 2
2
? ? ? ? ? ? ?
? ?
y x C y x C x y x y x
n n n n n n n
] ) 1 ( ) 2 ( ) 1 ( ) 2 ( ) 1 ( ) 2 ( ) 2 [( 2 ) 1 2 ( ) 1 2 (
6 0
6
6 4 2
4
6 2 4
2
6 6 6 6
C C C ? ? ? ? ? ? ? = 198 ] 1 30 4 15 8 [ 2 ? ? ? ? ?
Example: 3 The larger of
50 50
100 99 ? and
50
101 is [IIT 1980]
(a)
50 50
100 99 ? (b) Both are equal (c)
50
101 (d) None of these
Solution: (c) We have, ? ? ? ? ? ?
48 49 50 50 50
100
1 . 2
49 . 50
100 . 50 100 ) 1 100 ( 101 .....(i)
and ....... 100
1 . 2
49 . 50
100 . 50 100 ) 1 100 ( 99
48 49 50 50 50
? ? ? ? ? ? ..... (ii)
Subtracting,
50 47 50 50 50
100 ..... 100
1 . 2 . 3
48 . 49 . 50
. 2 100 99 101 ? ? ? ? ? . Hence
50 50 50
99 100 101 ? ? .
Example: 4 Sum of odd terms is A and sum of even terms is B in the expansion of
n
a x ) ( ? , then [Rajasthan PET 1987]
(a)
n n
a x a x AB
2 2
) ( ) (
4
1
? ? ? ? (b)
n n
a x a x AB
2 2
) ( ) ( 2 ? ? ? ?
(c)
n n
a x a x AB
2 2
) ( ) ( 4 ? ? ? ? (d) None of these
Solution: (c) ? ? ? ? ? ? ?
? ? ? n n n
n
n n n n n n n n
a x C a x C a x C x C a x . ... ) (
2 2
2
1 1
1 0
B A a x C a x C a x C x
n n n n n n n
? ? ? ? ? ? ?
? ? ?
....) ( ..) (
3 3
3
1 1
1
2 2
2
.....(i)
Similarly, B A a x
n
? ? ? ) ( .....(ii)
From (i) and (ii), we get
n n
a x a x AB
2 2
) ( ) ( 4 ? ? ? ?
Trick: Put 1 ? n in
n
a x ) ( ? . Then, B A a x ? ? ? . Comparing both sides a B x A ? ? , .
Option (c) L.H.S. xa AB 4 4 ? , R.H.S. ax a x a x 4 ) ( ) (
2 2
? ? ? ? . i.e., L.H.S. = R.H.S
6.1.4 General Term .
n
n
n r r n
r
n n n n n n n n
y x C y x C y x C y x C y x C y x
0 2 2
2
1 1
1
0
0
.... ..... ) ( ? ? ? ? ? ? ? ?
? ? ?
242 Binomial Theorem
The first term =
0
0
y x C
n n
The second term =
1 1
1
y x C
n n ?
. The third term =
2 2
2
y x C
n n ?
and so on
The term
r r n
r
n
y x C
?
is the
th
r ) 1 ( ? term from beginning in the expansion of
n
y x ) ( ? .
Let
1 ? r
T denote the (r + 1)
th
term ?
r r n
r
n
r
y x C T
?
?
?
1
This is called general term, because by giving different values to r, we can determine all
terms of the expansion.
In the binomial expansion of
r r n
r
n r
r
n
y x C T y x
?
?
? ? ? ) 1 ( , ) (
1
In the binomial expansion of
r
r
n
r
n
x C T x ? ?
?1
, ) 1 (
In the binomial expansion of
r
r
n r
r
n
x C T x ) 1 ( , ) 1 (
1
? ? ?
?
Note : ? In the binomial expansion of
n
y x ) ( ? , the p
th
term from the end is
th
p n ) 2 ( ? ? term
from beginning.
Important Tips
? In the expansion of N n y x
n
? ? , ) (
x
y
r
r n
T
T
r
r
?
?
?
?
?
? ? ?
?
?
1
1
? The coefficient of
1 ? n
x in the expansion of
2
) 1 (
) ).......( 2 )( 1 (
?
? ? ? ? ?
n n
n x x x
? The coefficient of
1 ? n
x in the expansion of
2
) 1 (
) ).....( 2 )( 1 (
?
? ? ? ?
n n
n x x x
Example: 5 If the 4
th
term in the expansion of
m
x px ) (
1 ?
? is 2.5 for all R x ? then
(a) 3 , 2 / 5 ? ? m p (b) 6 ,
2
1
? ? m p (c) 6 ,
2
1
? ? ? m p (d) None of these
Solution: (b) We have
2
5
4
? T ?
2
5
1 3
?
?
T ?
2
5
2
5 1
) (
6 3
3
3
3
3
? ? ? ?
?
?
?
?
?
? ? ? m m m m m
x p C
x
px C .......(i)
Clearly, R.H.S. of the above equality is independent of x
? 0 6 ? ? m , 6 ? m
Putting 6 ? m in (i) we get ? ?
2
5
3
3
6
p C
2
1
? p . Hence 6 , 2 / 1 ? ? m p .
Example: 6 If the second, third and fourth term in the expansion of
n
a x ) ( ? are 240, 720 and 1080 respectively,
then the value of n is
[Kurukshetra CEE 1991; DCE 1995, 2001]
(a) 15 (b) 20 (c) 10 (d) 5
Solution: (d) It is given that 1080 , 720 , 240
4 3 2
? ? ? T T T
Now, 240
2
? T ? 240
1 1
1 2
? ?
?
a x C T
n n
.....(i) and 720
3
? T ? 720
2 2
2 3
? ?
?
a x C T
n n
.....(ii)
1080
4
? T ? 1080
3 3
3 4
? ?
?
a x C T
n n
.....(iii)
To eliminate x,
2
1
720 . 720
1080 . 240 .
2
3
4 2
? ?
T
T T
?
2
1
.
3
4
3
2
?
T
T
T
T
.
Now
r
r n
C
C
T
T
r
n
r
n
r
r
1
1
1
? ?
? ?
?
?
. Putting 3 ? r and 2 in above expression, we get
2
1
1
2
.
3
2
?
?
?
n
n
? 5 ? n
Example: 7 The 5
th
term from the end in the expansion of
9
3
3
2
2
?
?
?
?
?
?
?
?
?
x
x
is
Binomial Theorem 243
(a)
3
63x (b)
3
252
x
? (c)
18
672
x
(d) None of these
Solution: (b) 5
th
term from the end =
th
) 2 5 9 ( ? ? term from the beginning in the expansion of
9
3
3
2
2
?
?
?
?
?
?
?
?
?
x
x
=
6
T
? ?
6
T
3 3
4
9
5
3
4
3
5
9
1 5
252 1
. 2 .
2
2 x x
C
x
x
C T ? ? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
.
Example: 8 If
3
2
T
T
in the expansion of
n
b a ) ( ? and
4
3
T
T
in the expansion of
3
) (
?
?
n
b a are equal, then ? n
[Rajasthan PET 1987, 96]
(a) 3 (b) 4 (c) 5 (d) 6
Solution: (c) ? ?
?
?
?
?
?
?
?
? ?
?
a
b
n a
b
n T
T
1
2
.
1 2
2
3
2
and ?
?
?
?
?
?
?
? ?
?
?
?
?
?
? ? ?
?
a
b
n a
b
n T
T
1
3
.
1 3 3
3
4
3
?
4
3
3
2
T
T
T
T
? (given) ; ? ?
?
?
?
?
?
?
? ?
?
?
?
?
?
? a
b
n a
b
n 1
3
1
2
? 3 3 2 2 ? ? ? n n ? 5 ? n
6.1.5 Independent Term or Constant Term.
Independent term or constant term of a binomial expansion is the term in which exponent of
the variable is zero.
Condition : ) ( r n ? [Power of x] + r . [Power of y] = 0, in the expansion of
n
y x ] [ ? .
Example: 9 The term independent of x in the expansion of
10
2
2
3
3
?
?
?
?
?
?
?
?
?
x
x
will be
[IIT 1965; BIT Ranchi 1993; Karnataka CET 2000; UPSEAT 2001]
(a)
2
3
(b)
4
5
(c)
2
5
(d) None of these
Solution: (b) 2 0 ) 2 (
2
1
) 10 ( ? ? ? ? ? ?
?
?
?
?
?
? r r r ?
4
5
2
3
3
1
2 2 / 8
2
10
3
? ?
?
?
?
?
?
?
?
?
?
?
?
? C T
Example: 10 The term independent of x in the expansion of
n
n
x
x ?
?
?
?
?
?
? ?
1
1 ) 1 ( is [EAMCET 1989]
(a)
2 2
1
2
0
) 1 ( ...... 2
n
C n C C ? ? ? ? (b)
2
1 0
) ...... (
n
C C C ? ? ? (c)
2 2
1
2
0
......
n
C C C ? ? ? (d) None of these
Solution: (c) We know that,
n
n
n n n n n
x C x C x C C x ? ? ? ? ? ? .......... ) 1 (
2
2
1
1 0
n
n
n n n n
n
x
C
x
C
x
C C
x
1
.....
1 1 1
1
2
2
1
1 0
? ? ? ? ? ?
?
?
?
?
?
?
Obviously, the term independent of x will be
2 2
1
2
0 1 1 0 0
....... . ..... .
n n
n
n
n n n n n
C C C C C C C C C ? ? ? ? ? ? ?
Trick : Put 1 ? n in the expansion of
x
x
x
x
x
x
1
2 1
1
1
1
1 ) 1 (
1
1
? ? ? ? ? ? ? ?
?
?
?
?
?
? ? .....(i)
We want coefficient of
0
x . Comparing to equation (i). Then, we get 2 i.e., independent of x.
Option (c) :
2 2
1
2
0
.....
n
C C C ? ? ; Put 1 ? n ; Then 2 1 1
2
1
1 2
0
1
? ? ? ? C C .
Example: 11 The coefficient of
7 ?
x in the expansion of
11
2
1
?
?
?
?
?
?
?
bx
ax will be [IIT 1967; Rajasthan PET
1996]
(a)
5
6
462
b
a
(b)
6
5
462
b
a
(c)
6
5
462
b
a ?
(d)
5
6
462
b
a
?
Solution: (b) For coefficient of
7 ?
x , 6 7 2 11 7 . ) 2 ( ) 1 ( ) 11 ( ? ? ? ? ? ? ? ? ? ? ? ? r r r r r ;
6
5
6
5
6
11
7
462 1
) (
b
a
b
a C T ? ?
?
?
?
?
?
? ?
Page 5
240 Binomial Theorem
6.1.1 Binomial Expression.
An algebraic expression consisting of two terms with +ve or – ve sign between them is
called a binomial expression.
For example :
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
? ? ?
3 4 2
4 1
, ), 3 2 ( ), (
y x x
q
x
p
y x b a etc.
6.1.2 Binomial Theorem for Positive Integral Index .
The rule by which any power of binomial can be expanded is called the binomial theorem.
If n is a positive integer and x, C y ? then
n
n
n n
n
n r r n
r
n n n n n n n n
y x C xy C y x C y x C y x C y x C y x
0 1
1
2 2
2
1 1
1
0 0
0
...... ........ ) ( ? ? ? ? ? ? ? ? ?
?
?
? ? ? ?
i.e.,
?
?
?
? ?
n
r
r r n
r
n n
y x C y x
0
. . ) ( .....(i)
Here
n
n n n n
C C C C ,...... , ,
2 1 0
are called binomial coefficients and
! ) ( !
!
r n r
n
C
r
n
?
? for n r ? ? 0 .
Important Tips
? The number of terms in the expansion of
n
y x ) ( ? are (n + 1).
? The expansion contains decreasing power of x and increasing power of y. The sum of the powers of x and y in each
term is equal to n.
? The binomial coefficients ........ , ,
2 1 0
C C C
n n n
equidistant from beginning and end are equal i.e.,
r n
n
r
n
C C
?
? .
? ? ?
n
y x ) ( Sum of odd terms + sum of even terms.
6.1.3 Some Important Expansions .
(1) Replacing y by – y in (i), we get,
?
y x C y x C y x C y x C y x C y x
n
n n r r n
r
n r n n n n n n n
. ) 1 ( .... . ) 1 ( .... . . . ) (
0 2 2
2
1 1
1
0 0
0
? ? ? ? ? ? ? ? ?
? ? ? ?
i.e.,
?
?
?
? ? ?
n
r
r r n
r
n r n
y x C y x
0
. ) 1 ( ) ( .....(ii)
The terms in the expansion of
n
y x ) ( ? are alternatively positive and negative, the last term
is positive or negative according as n is even or odd.
(2) Replacing x by 1 and y by x in equation (i) we get,
n
n
n r
r
n n n n n
x C x C x C x C x C x ? ? ? ? ? ? ? ? ...... ...... ) 1 (
2
2
1
1
0
0
i.e.,
?
?
? ?
n
r
r
r
n n
x C x
0
) 1 (
This is expansion of
n
x) 1 ( ? in ascending power of x.
240
Binomial Theorem 241
(3) Replacing x by 1 and y by – x in (i) we get,
n
n
n n r
r
n r n n n n
x C x C x C x C x C x ) 1 ( .... ) 1 ( ...... ) 1 (
2
2
1
1
0
0
? ? ? ? ? ? ? ? ? ? i.e.,
?
?
? ? ?
n
r
r
r
n r n
x C x
0
) 1 ( ) 1 (
(4) .......] [ 2 ) ( ) (
4 4
4
2 2
2
0
0
? ? ? ? ? ? ?
? ?
y x C y x C y x C y x y x
n n n n n n n n
and
.......] [ 2 ) ( ) (
5 5
5
3 3
3
1 1
1
? ? ? ? ? ? ?
? ? ?
y x C y x C y x C y x y x
n n n n n n n n
(5) The coefficient of
th
r ) 1 ( ? term in the expansion of
n
x) 1 ( ? is
r
n
C .
(6) The coefficient of
r
x in the expansion of
n
x) 1 ( ? is
r
n
C .
Note : ? If n is odd, then
n n
y x y x ) ( ) ( ? ? ? and
n n
y x y x ) ( ) ( ? ? ? , both have the same number of
terms equal to .
2
1
?
?
?
?
?
? ? n
? If n is even, then
n n
y x y x ) ( ) ( ? ? ? has ?
?
?
?
?
?
?1
2
n
terms and
n n
y x y x ) ( ) ( ? ? ? has
2
n
terms.
Example: 1 ? ? ? ? ? ?
5 4 3 2 2 3 4 5
32 80 80 40 10 a xa a x a x a x x
(a)
5
) ( a x ? (b)
5
) 3 ( a x ? (c)
5
) 2 ( a x ? (d)
3
) 2 ( a x ?
Solution: (c) Conversely
n
n
n n n n n n n
y x C y x C y x C C y x
0 2 2
2
1 1
1 0
.... ) ( ? ? ? ? ? ?
? ?
5
) 2 ( a x ? =
5 0
5
5 4 1
4
5 3 2
3
5 2 3
2
5 1 4
1
5 5
0
5
) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( a x C a x C a x C a x C a x C x C ? ? ? ? ?
=
5 4 3 2 2 3 4 5
32 80 80 40 10 a xa a x a x a x x ? ? ? ? ? .
Example: 2 The value of
6 6
) 1 2 ( ) 1 2 ( ? ? ? will be
(a) – 198 (b) 198 (c) 98 (d) – 99
Solution: (b) We know that, .....] [ 2 ) ( ) (
4 4
4
2 2
2
? ? ? ? ? ? ?
? ?
y x C y x C x y x y x
n n n n n n n
] ) 1 ( ) 2 ( ) 1 ( ) 2 ( ) 1 ( ) 2 ( ) 2 [( 2 ) 1 2 ( ) 1 2 (
6 0
6
6 4 2
4
6 2 4
2
6 6 6 6
C C C ? ? ? ? ? ? ? = 198 ] 1 30 4 15 8 [ 2 ? ? ? ? ?
Example: 3 The larger of
50 50
100 99 ? and
50
101 is [IIT 1980]
(a)
50 50
100 99 ? (b) Both are equal (c)
50
101 (d) None of these
Solution: (c) We have, ? ? ? ? ? ?
48 49 50 50 50
100
1 . 2
49 . 50
100 . 50 100 ) 1 100 ( 101 .....(i)
and ....... 100
1 . 2
49 . 50
100 . 50 100 ) 1 100 ( 99
48 49 50 50 50
? ? ? ? ? ? ..... (ii)
Subtracting,
50 47 50 50 50
100 ..... 100
1 . 2 . 3
48 . 49 . 50
. 2 100 99 101 ? ? ? ? ? . Hence
50 50 50
99 100 101 ? ? .
Example: 4 Sum of odd terms is A and sum of even terms is B in the expansion of
n
a x ) ( ? , then [Rajasthan PET 1987]
(a)
n n
a x a x AB
2 2
) ( ) (
4
1
? ? ? ? (b)
n n
a x a x AB
2 2
) ( ) ( 2 ? ? ? ?
(c)
n n
a x a x AB
2 2
) ( ) ( 4 ? ? ? ? (d) None of these
Solution: (c) ? ? ? ? ? ? ?
? ? ? n n n
n
n n n n n n n n
a x C a x C a x C x C a x . ... ) (
2 2
2
1 1
1 0
B A a x C a x C a x C x
n n n n n n n
? ? ? ? ? ? ?
? ? ?
....) ( ..) (
3 3
3
1 1
1
2 2
2
.....(i)
Similarly, B A a x
n
? ? ? ) ( .....(ii)
From (i) and (ii), we get
n n
a x a x AB
2 2
) ( ) ( 4 ? ? ? ?
Trick: Put 1 ? n in
n
a x ) ( ? . Then, B A a x ? ? ? . Comparing both sides a B x A ? ? , .
Option (c) L.H.S. xa AB 4 4 ? , R.H.S. ax a x a x 4 ) ( ) (
2 2
? ? ? ? . i.e., L.H.S. = R.H.S
6.1.4 General Term .
n
n
n r r n
r
n n n n n n n n
y x C y x C y x C y x C y x C y x
0 2 2
2
1 1
1
0
0
.... ..... ) ( ? ? ? ? ? ? ? ?
? ? ?
242 Binomial Theorem
The first term =
0
0
y x C
n n
The second term =
1 1
1
y x C
n n ?
. The third term =
2 2
2
y x C
n n ?
and so on
The term
r r n
r
n
y x C
?
is the
th
r ) 1 ( ? term from beginning in the expansion of
n
y x ) ( ? .
Let
1 ? r
T denote the (r + 1)
th
term ?
r r n
r
n
r
y x C T
?
?
?
1
This is called general term, because by giving different values to r, we can determine all
terms of the expansion.
In the binomial expansion of
r r n
r
n r
r
n
y x C T y x
?
?
? ? ? ) 1 ( , ) (
1
In the binomial expansion of
r
r
n
r
n
x C T x ? ?
?1
, ) 1 (
In the binomial expansion of
r
r
n r
r
n
x C T x ) 1 ( , ) 1 (
1
? ? ?
?
Note : ? In the binomial expansion of
n
y x ) ( ? , the p
th
term from the end is
th
p n ) 2 ( ? ? term
from beginning.
Important Tips
? In the expansion of N n y x
n
? ? , ) (
x
y
r
r n
T
T
r
r
?
?
?
?
?
? ? ?
?
?
1
1
? The coefficient of
1 ? n
x in the expansion of
2
) 1 (
) ).......( 2 )( 1 (
?
? ? ? ? ?
n n
n x x x
? The coefficient of
1 ? n
x in the expansion of
2
) 1 (
) ).....( 2 )( 1 (
?
? ? ? ?
n n
n x x x
Example: 5 If the 4
th
term in the expansion of
m
x px ) (
1 ?
? is 2.5 for all R x ? then
(a) 3 , 2 / 5 ? ? m p (b) 6 ,
2
1
? ? m p (c) 6 ,
2
1
? ? ? m p (d) None of these
Solution: (b) We have
2
5
4
? T ?
2
5
1 3
?
?
T ?
2
5
2
5 1
) (
6 3
3
3
3
3
? ? ? ?
?
?
?
?
?
? ? ? m m m m m
x p C
x
px C .......(i)
Clearly, R.H.S. of the above equality is independent of x
? 0 6 ? ? m , 6 ? m
Putting 6 ? m in (i) we get ? ?
2
5
3
3
6
p C
2
1
? p . Hence 6 , 2 / 1 ? ? m p .
Example: 6 If the second, third and fourth term in the expansion of
n
a x ) ( ? are 240, 720 and 1080 respectively,
then the value of n is
[Kurukshetra CEE 1991; DCE 1995, 2001]
(a) 15 (b) 20 (c) 10 (d) 5
Solution: (d) It is given that 1080 , 720 , 240
4 3 2
? ? ? T T T
Now, 240
2
? T ? 240
1 1
1 2
? ?
?
a x C T
n n
.....(i) and 720
3
? T ? 720
2 2
2 3
? ?
?
a x C T
n n
.....(ii)
1080
4
? T ? 1080
3 3
3 4
? ?
?
a x C T
n n
.....(iii)
To eliminate x,
2
1
720 . 720
1080 . 240 .
2
3
4 2
? ?
T
T T
?
2
1
.
3
4
3
2
?
T
T
T
T
.
Now
r
r n
C
C
T
T
r
n
r
n
r
r
1
1
1
? ?
? ?
?
?
. Putting 3 ? r and 2 in above expression, we get
2
1
1
2
.
3
2
?
?
?
n
n
? 5 ? n
Example: 7 The 5
th
term from the end in the expansion of
9
3
3
2
2
?
?
?
?
?
?
?
?
?
x
x
is
Binomial Theorem 243
(a)
3
63x (b)
3
252
x
? (c)
18
672
x
(d) None of these
Solution: (b) 5
th
term from the end =
th
) 2 5 9 ( ? ? term from the beginning in the expansion of
9
3
3
2
2
?
?
?
?
?
?
?
?
?
x
x
=
6
T
? ?
6
T
3 3
4
9
5
3
4
3
5
9
1 5
252 1
. 2 .
2
2 x x
C
x
x
C T ? ? ? ? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
.
Example: 8 If
3
2
T
T
in the expansion of
n
b a ) ( ? and
4
3
T
T
in the expansion of
3
) (
?
?
n
b a are equal, then ? n
[Rajasthan PET 1987, 96]
(a) 3 (b) 4 (c) 5 (d) 6
Solution: (c) ? ?
?
?
?
?
?
?
?
? ?
?
a
b
n a
b
n T
T
1
2
.
1 2
2
3
2
and ?
?
?
?
?
?
?
? ?
?
?
?
?
?
? ? ?
?
a
b
n a
b
n T
T
1
3
.
1 3 3
3
4
3
?
4
3
3
2
T
T
T
T
? (given) ; ? ?
?
?
?
?
?
?
? ?
?
?
?
?
?
? a
b
n a
b
n 1
3
1
2
? 3 3 2 2 ? ? ? n n ? 5 ? n
6.1.5 Independent Term or Constant Term.
Independent term or constant term of a binomial expansion is the term in which exponent of
the variable is zero.
Condition : ) ( r n ? [Power of x] + r . [Power of y] = 0, in the expansion of
n
y x ] [ ? .
Example: 9 The term independent of x in the expansion of
10
2
2
3
3
?
?
?
?
?
?
?
?
?
x
x
will be
[IIT 1965; BIT Ranchi 1993; Karnataka CET 2000; UPSEAT 2001]
(a)
2
3
(b)
4
5
(c)
2
5
(d) None of these
Solution: (b) 2 0 ) 2 (
2
1
) 10 ( ? ? ? ? ? ?
?
?
?
?
?
? r r r ?
4
5
2
3
3
1
2 2 / 8
2
10
3
? ?
?
?
?
?
?
?
?
?
?
?
?
? C T
Example: 10 The term independent of x in the expansion of
n
n
x
x ?
?
?
?
?
?
? ?
1
1 ) 1 ( is [EAMCET 1989]
(a)
2 2
1
2
0
) 1 ( ...... 2
n
C n C C ? ? ? ? (b)
2
1 0
) ...... (
n
C C C ? ? ? (c)
2 2
1
2
0
......
n
C C C ? ? ? (d) None of these
Solution: (c) We know that,
n
n
n n n n n
x C x C x C C x ? ? ? ? ? ? .......... ) 1 (
2
2
1
1 0
n
n
n n n n
n
x
C
x
C
x
C C
x
1
.....
1 1 1
1
2
2
1
1 0
? ? ? ? ? ?
?
?
?
?
?
?
Obviously, the term independent of x will be
2 2
1
2
0 1 1 0 0
....... . ..... .
n n
n
n
n n n n n
C C C C C C C C C ? ? ? ? ? ? ?
Trick : Put 1 ? n in the expansion of
x
x
x
x
x
x
1
2 1
1
1
1
1 ) 1 (
1
1
? ? ? ? ? ? ? ?
?
?
?
?
?
? ? .....(i)
We want coefficient of
0
x . Comparing to equation (i). Then, we get 2 i.e., independent of x.
Option (c) :
2 2
1
2
0
.....
n
C C C ? ? ; Put 1 ? n ; Then 2 1 1
2
1
1 2
0
1
? ? ? ? C C .
Example: 11 The coefficient of
7 ?
x in the expansion of
11
2
1
?
?
?
?
?
?
?
bx
ax will be [IIT 1967; Rajasthan PET
1996]
(a)
5
6
462
b
a
(b)
6
5
462
b
a
(c)
6
5
462
b
a ?
(d)
5
6
462
b
a
?
Solution: (b) For coefficient of
7 ?
x , 6 7 2 11 7 . ) 2 ( ) 1 ( ) 11 ( ? ? ? ? ? ? ? ? ? ? ? ? r r r r r ;
6
5
6
5
6
11
7
462 1
) (
b
a
b
a C T ? ?
?
?
?
?
?
? ?
244 Binomial Theorem
Example: 12 If the coefficients of second, third and fourth term in the expansion of
n
x
2
) 1 ( ? are in A.P., then
7 9 2
2
? ? n n is equal to
[AMU 2001]
(a) –1 (b) 0 (c) 1 (d) 3/2
Solution: (b)
1
2
2
C T
n
? ,
3
2
4 2
2
3
, C T C T
n n
? ? are in A.P. then,
3
2
1
2
2
2
. 2 C C C
n n n
? ?
1 . 2 . 3
) 2 2 )( 1 2 ( 2
1
2
1 . 2
) 1 2 (. 2
. 2
? ?
? ?
? n n n n n n
On solving, 0 7 9 2
2
? ? ? n n
Example: 13 The coefficient of
5
x in the expansion of
4 5 2
) 1 ( ) 1 ( x x ? ? is [EAMCET 1996;
UPSEAT 2001; Pb. CET 2002]
(a) 30 (b) 60 (c) 40 (d) None of these
Solution: (b) We have
4 5 2
) 1 ( ) 1 ( x x ? ? = .....) (
4
2
5 2
1
5
0
5
? ? ? x C x C C .......) (
2
2
4 1
1
4
0
4
? ? ? x C x C C
So coefficient of
5
x in ] ) 1 ( ) 1 [(
4 5 2
x x ? ? = 60 . .
1
5
3
4
1
4
2
5
? ? C C C C
Example: 14 If A and B are the coefficient of
n
x in the expansions of
n
x
2
) 1 ( ? and
1 2
) 1 (
?
?
n
x respectively, then[MP PET 1999]
(a) B A ? (b) B A 2 ? (c) B A ? 2 (d) None of these
Solution: (b) ? A coefficient of
n
x in
n
x
2
) 1 ( ? =
! !
! ) 2 (
2
n n
n
C
n
n
? =
! )! 1 (
)! 1 2 .( 2
n n
n
?
?
.....(i)
? B coefficient of
n
x in
)! 1 ( !
)! 1 2 (
) 1 (
1 2 1 2
?
?
? ? ?
? ?
n n
n
C x
n
n n
.....(ii)
By (i) and (ii) we get, B A 2 ?
Example: 15 The coefficient of
n
x in the expansion of
n
x x ) 1 )( 1 ( ? ? is [AIEEE 2004]
(a) n
n 1
) 1 (
?
? (b) ) 1 ( ) 1 ( n
n
? ? (c)
2 1
) 1 ( ) 1 ( ? ?
?
n
n
(d) ) 1 ( ? n
Solution: (b) Coefficient of
n
x in
n
x x ) 1 ( ) 1 ( ? ? = Coefficient of
n
x in ? ?
n
x) 1 ( coefficient of
n n
x x ) 1 ( in
1
?
?
= Coefficient of
n
x in ] ) ( . ) ( [
1
1
?
?
? ? ?
n
n
n n
n
n
x C x x C =
1
1
. ) 1 ( ) 1 ( C C
n n
n
n n ?
? ? ? = ] 1 [ ) 1 ( ) .( ) 1 ( ) 1 ( n n
n n n
? ? ? ? ? ? ? .
6.1.6 Number of Terms in the Expansion of (a + b + c)
n
and (a + b + c + d)
n
.
n
c b a ) ( ? ? can be expanded as :
n n
c b a c b a } ) {( ) ( ? ? ? ? ?
n
n
n n n n n n
c C c b a C c b a C b a ? ? ? ? ? ? ? ?
? ?
..... ) ( ) ( ) ( ) ( ) (
2 2
2
1 1
1
term 1 ... term ) 1 ( term term ) 1 ( ? ? ? ? ? ? ? n n n
? Total number of terms =
2
) 2 )( 1 (
1 ...... ) 1 ( ) ( ) 1 (
? ?
? ? ? ? ? ? ?
n n
n n n .
Similarly, Number of terms in the expansion of
6
) 3 )( 2 )( 1 (
) (
? ? ?
? ? ? ?
n n n
d c b a
n
.
Example: 16 If the number of terms in the expansion of
n
z y x ) 3 2 ( ? ? is 45, then ? n
(a) 7 (b) 8 (c) 9 (d) None of these
Solution: (b) Given, total number of terms = 45
2
) 2 ( ) 1 (
?
? ? n n
? 90 ) 2 )( 1 ( ? ? ? n n ? 8 ? n .
Example: 17 The number of terms in the expansion of
3 2 2
] ) 3 ( ) 3 [( y x y x ? ? is [Rajasthan PET 1986]
(a) 14 (b) 28 (c) 32 (d) 56
Solution: (b) We have
6
)] 3 )( 3 [( y x y x ? ? =
6 2 2
] 3 8 3 [ y xy x ? ? ; Number of terms = 28
2
) 2 6 ( ) 1 6 (
?
? ?
6.1.7 Middle Term.
The middle term depends upon the value of n.
Read More