JEE Exam  >  JEE Notes  >  JEE Main & Advanced Mock Test Series 2025  >  JEE Main 2024 February 1 Shift 1 Paper & Solutions

JEE Main 2024 February 1 Shift 1 Paper & Solutions | JEE Main & Advanced Mock Test Series 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Thursday 01
st
 February, 2024)           TIME : 9 : 00 AM  to  12 : 00 NOON 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
 
SECTION-A 
1. A bag contains 8 balls, whose colours are either 
white or black. 4 balls are drawn at random 
without replacement and it was found that 2 balls 
are white and other 2 balls are black. The 
probability that the bag contains equal number of 
white and black balls is: 
 (1) 
2
5
 (2) 
2
7
 
 (3) 
1
7
  (4) 
1
5
 
 Ans. (2) 
Sol. 
 P(4W4B/2W2B) =  
 
(4 4 ) (2 2 /4 4 )
(2 6 ) (2 2 /2 6 ) (3 5 ) (2 2 /3 5 )
............. (6 2 ) (2 2 /6 2 )
P W B P W B W B
P W B P W B W B P W B P W B W B
P W B P W B W B
?? ?? ?K ?? ?K ?K ?? 
=
4 4
2 2
8
4
2 6 3 5 6 2
2 2 2 2 2 2
8 8 8
4 4 4
C C 1
5 C
C C C C C C 1 1 1
...
5 C 5 C 5 C
?? ?? ?? ?? ?? ?? ?K ?? ?K ?K ?? 
= 
2
7
 
 
2. The value of the integral 
  
4
4 4
0
:
sin (2 ) cos (2 )
xdx
equals
x x
?? ?K ?? 
 (1) 
2
2
8
?? (2) 
2
2
16
?? 
 (3) 
2
2
32
??  (4) 
2
2
64
?? 
 Ans. (3) 
Sol.  
4
4 4
0
sin (2 ) cos (2 )
xdx
x x
?? ?K ?? 
 Let 2x t ?] then 
1
2
dx dt ?] 
 
2
4 4
0
2
4 4
0
2
4 4
0
2
4 4
0
4 2
4
0
1
4 sin cos
1 2
4
sin cos
2 2
1
2
4 sin cos
2
8 sin cos
sec
2
8 tan 1
tdt
I
t t
t dt
I
t t
dt
I I
t t
dt
I
t t
tdt
I
t
?? ?? ?? ?? ?? ?? ????
?? ?? ?? ?] ?K ????
?M ????
????
?] ?? ?? ?? ?? ?M ?K ?M ?? ?? ?? ?? ?? ?? ?? ?? ?]?M
?K ?] ?K ?] ?K ?? ?? ?? ?? ?? 
 Let tant = y then sec
2
t dt = dy 
2
4
0
(1 )
2
8 1
?? ?K ?] ?K ?? y dy
I
y
?? 
2
2
0
2
1
1
y
dy
1
16
y
y
?? ?K ?? ?] ?K ?? 
 Put 
1
y p
y
?M?] 
 
?H ?I 2
2
dp
I
16
p 2
?? ?M??
?? ?] ?K ?? 
 
1
p
tan
16 2 2
?? ?M ?M??
???? ?? ????
?] ???? ????
???? ????
 
 
2
16 2
?] I
?? 
Page 2


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Thursday 01
st
 February, 2024)           TIME : 9 : 00 AM  to  12 : 00 NOON 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
 
SECTION-A 
1. A bag contains 8 balls, whose colours are either 
white or black. 4 balls are drawn at random 
without replacement and it was found that 2 balls 
are white and other 2 balls are black. The 
probability that the bag contains equal number of 
white and black balls is: 
 (1) 
2
5
 (2) 
2
7
 
 (3) 
1
7
  (4) 
1
5
 
 Ans. (2) 
Sol. 
 P(4W4B/2W2B) =  
 
(4 4 ) (2 2 /4 4 )
(2 6 ) (2 2 /2 6 ) (3 5 ) (2 2 /3 5 )
............. (6 2 ) (2 2 /6 2 )
P W B P W B W B
P W B P W B W B P W B P W B W B
P W B P W B W B
?? ?? ?K ?? ?K ?K ?? 
=
4 4
2 2
8
4
2 6 3 5 6 2
2 2 2 2 2 2
8 8 8
4 4 4
C C 1
5 C
C C C C C C 1 1 1
...
5 C 5 C 5 C
?? ?? ?? ?? ?? ?? ?K ?? ?K ?K ?? 
= 
2
7
 
 
2. The value of the integral 
  
4
4 4
0
:
sin (2 ) cos (2 )
xdx
equals
x x
?? ?K ?? 
 (1) 
2
2
8
?? (2) 
2
2
16
?? 
 (3) 
2
2
32
??  (4) 
2
2
64
?? 
 Ans. (3) 
Sol.  
4
4 4
0
sin (2 ) cos (2 )
xdx
x x
?? ?K ?? 
 Let 2x t ?] then 
1
2
dx dt ?] 
 
2
4 4
0
2
4 4
0
2
4 4
0
2
4 4
0
4 2
4
0
1
4 sin cos
1 2
4
sin cos
2 2
1
2
4 sin cos
2
8 sin cos
sec
2
8 tan 1
tdt
I
t t
t dt
I
t t
dt
I I
t t
dt
I
t t
tdt
I
t
?? ?? ?? ?? ?? ?? ????
?? ?? ?? ?] ?K ????
?M ????
????
?] ?? ?? ?? ?? ?M ?K ?M ?? ?? ?? ?? ?? ?? ?? ?? ?]?M
?K ?] ?K ?] ?K ?? ?? ?? ?? ?? 
 Let tant = y then sec
2
t dt = dy 
2
4
0
(1 )
2
8 1
?? ?K ?] ?K ?? y dy
I
y
?? 
2
2
0
2
1
1
y
dy
1
16
y
y
?? ?K ?? ?] ?K ?? 
 Put 
1
y p
y
?M?] 
 
?H ?I 2
2
dp
I
16
p 2
?? ?M??
?? ?] ?K ?? 
 
1
p
tan
16 2 2
?? ?M ?M??
???? ?? ????
?] ???? ????
???? ????
 
 
2
16 2
?] I
?? 
3. If A =
2 1
1 2
????
????
?M????
????
, B = 
1 0
1 1
????
????
????
, C = ABA
T
 and X 
= A
T
C
2
A, then det X is equal to : 
 (1) 243 
 (2) 729 
 (3) 27 
 (4) 891 
 Ans. (2) 
Sol. 
 
2 1
det( ) 3
1 2
1 0
det( ) 1
1 1
A A
B B
????
?] ?? ?] ????
?M????
????
????
?] ?? ?] ????
????
 
 Now C = ABA
T
 ?? det(C) = (dct (A))
2 
x det(B) 
 9 C ?] 
 Now |X| = |A
T
C
2
A| 
 = |A
T
| |C|
2
 |A| 
 = |A|
2
 |C|
2 
 = 9 x 81 
 = 729 
4. If tanA =
2 2
1
,tan
( 1) 1
?] ?K ?K ?K ?K x
B
x x x x x
  
 and 
 
?H ?I 1
3 2 1
2
tan ,0 , , ,
2
?M ?M ?M ?] ?K ?K ?\ ?\ C x x x A B C then
?? 
         A + B is equal to : 
 (1) C 
 (2) C ?? ?M 
 (3) 2 C ?? ?M 
 (4) 
2
C
?? ?M 
 Ans. (1) 
Sol. 
 Finding tan (A + B) we get 
 ?? tan (A + B) =  
2 2
2
1
( 1) 1 tan tan
1
1 tan tan
1
1
x
x x x x x A B
A B
x x
?K ?K ?K ?K ?K ?K ?] ?M ?M ?K?K
 
 ?? tan (A + B) = 
?H ?I ?H ?I ?H ?I ?H ?I 2
2
1 1 x x x
x x x
?K ?K ?K ?K 
?H ?I ?H ?I ?H ?I ?H ?I 2
2
2
1 1
1
tan( ) tan
x x x
x x x
x x
A B C
x x
A B C
?K ?K ?K ?K ?K?K
?K ?] ?] ?K?]
 
5. If n is the number of ways five different employees 
can sit into four indistinguishable offices where 
any office may have any number of persons 
including zero, then n is equal to: 
 (1) 47 
 (2) 53 
 (3) 51 
 (4) 43 
 Ans. (3) 
Sol. 
 Total ways to partition 5 into 4 parts are : 
 5, 0, 0, 0 ?? 1 way 
 4, 1, 0, 0 ?? 5!
4!
?] 5 ways 
 3, 2, 0, 0, 
5!
10
3!2!
???] ways 
 
5!
2,2,0,1 15
2!2!2!
???] ways 
 
3
5!
2,1,1,1 10
2!(1!) 3!
???] ways 
 
5!
3,1,1,0 10
3!2!
???] ways 
 Total ?? 1+5+10+15+10+10 = 51 ways 
Page 3


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Thursday 01
st
 February, 2024)           TIME : 9 : 00 AM  to  12 : 00 NOON 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
 
SECTION-A 
1. A bag contains 8 balls, whose colours are either 
white or black. 4 balls are drawn at random 
without replacement and it was found that 2 balls 
are white and other 2 balls are black. The 
probability that the bag contains equal number of 
white and black balls is: 
 (1) 
2
5
 (2) 
2
7
 
 (3) 
1
7
  (4) 
1
5
 
 Ans. (2) 
Sol. 
 P(4W4B/2W2B) =  
 
(4 4 ) (2 2 /4 4 )
(2 6 ) (2 2 /2 6 ) (3 5 ) (2 2 /3 5 )
............. (6 2 ) (2 2 /6 2 )
P W B P W B W B
P W B P W B W B P W B P W B W B
P W B P W B W B
?? ?? ?K ?? ?K ?K ?? 
=
4 4
2 2
8
4
2 6 3 5 6 2
2 2 2 2 2 2
8 8 8
4 4 4
C C 1
5 C
C C C C C C 1 1 1
...
5 C 5 C 5 C
?? ?? ?? ?? ?? ?? ?K ?? ?K ?K ?? 
= 
2
7
 
 
2. The value of the integral 
  
4
4 4
0
:
sin (2 ) cos (2 )
xdx
equals
x x
?? ?K ?? 
 (1) 
2
2
8
?? (2) 
2
2
16
?? 
 (3) 
2
2
32
??  (4) 
2
2
64
?? 
 Ans. (3) 
Sol.  
4
4 4
0
sin (2 ) cos (2 )
xdx
x x
?? ?K ?? 
 Let 2x t ?] then 
1
2
dx dt ?] 
 
2
4 4
0
2
4 4
0
2
4 4
0
2
4 4
0
4 2
4
0
1
4 sin cos
1 2
4
sin cos
2 2
1
2
4 sin cos
2
8 sin cos
sec
2
8 tan 1
tdt
I
t t
t dt
I
t t
dt
I I
t t
dt
I
t t
tdt
I
t
?? ?? ?? ?? ?? ?? ????
?? ?? ?? ?] ?K ????
?M ????
????
?] ?? ?? ?? ?? ?M ?K ?M ?? ?? ?? ?? ?? ?? ?? ?? ?]?M
?K ?] ?K ?] ?K ?? ?? ?? ?? ?? 
 Let tant = y then sec
2
t dt = dy 
2
4
0
(1 )
2
8 1
?? ?K ?] ?K ?? y dy
I
y
?? 
2
2
0
2
1
1
y
dy
1
16
y
y
?? ?K ?? ?] ?K ?? 
 Put 
1
y p
y
?M?] 
 
?H ?I 2
2
dp
I
16
p 2
?? ?M??
?? ?] ?K ?? 
 
1
p
tan
16 2 2
?? ?M ?M??
???? ?? ????
?] ???? ????
???? ????
 
 
2
16 2
?] I
?? 
3. If A =
2 1
1 2
????
????
?M????
????
, B = 
1 0
1 1
????
????
????
, C = ABA
T
 and X 
= A
T
C
2
A, then det X is equal to : 
 (1) 243 
 (2) 729 
 (3) 27 
 (4) 891 
 Ans. (2) 
Sol. 
 
2 1
det( ) 3
1 2
1 0
det( ) 1
1 1
A A
B B
????
?] ?? ?] ????
?M????
????
????
?] ?? ?] ????
????
 
 Now C = ABA
T
 ?? det(C) = (dct (A))
2 
x det(B) 
 9 C ?] 
 Now |X| = |A
T
C
2
A| 
 = |A
T
| |C|
2
 |A| 
 = |A|
2
 |C|
2 
 = 9 x 81 
 = 729 
4. If tanA =
2 2
1
,tan
( 1) 1
?] ?K ?K ?K ?K x
B
x x x x x
  
 and 
 
?H ?I 1
3 2 1
2
tan ,0 , , ,
2
?M ?M ?M ?] ?K ?K ?\ ?\ C x x x A B C then
?? 
         A + B is equal to : 
 (1) C 
 (2) C ?? ?M 
 (3) 2 C ?? ?M 
 (4) 
2
C
?? ?M 
 Ans. (1) 
Sol. 
 Finding tan (A + B) we get 
 ?? tan (A + B) =  
2 2
2
1
( 1) 1 tan tan
1
1 tan tan
1
1
x
x x x x x A B
A B
x x
?K ?K ?K ?K ?K ?K ?] ?M ?M ?K?K
 
 ?? tan (A + B) = 
?H ?I ?H ?I ?H ?I ?H ?I 2
2
1 1 x x x
x x x
?K ?K ?K ?K 
?H ?I ?H ?I ?H ?I ?H ?I 2
2
2
1 1
1
tan( ) tan
x x x
x x x
x x
A B C
x x
A B C
?K ?K ?K ?K ?K?K
?K ?] ?] ?K?]
 
5. If n is the number of ways five different employees 
can sit into four indistinguishable offices where 
any office may have any number of persons 
including zero, then n is equal to: 
 (1) 47 
 (2) 53 
 (3) 51 
 (4) 43 
 Ans. (3) 
Sol. 
 Total ways to partition 5 into 4 parts are : 
 5, 0, 0, 0 ?? 1 way 
 4, 1, 0, 0 ?? 5!
4!
?] 5 ways 
 3, 2, 0, 0, 
5!
10
3!2!
???] ways 
 
5!
2,2,0,1 15
2!2!2!
???] ways 
 
3
5!
2,1,1,1 10
2!(1!) 3!
???] ways 
 
5!
3,1,1,0 10
3!2!
???] ways 
 Total ?? 1+5+10+15+10+10 = 51 ways 
 
6. LetS={ : 1 1 z C z ?? ?M ?] and
?H ?I ?H ?I ?H ?I 2 1 2 2 z z i z z ?M ?K ?M ?M ?] }. Let z
1
, z
2
 
S ?? be such that 
1 2
max min
z s z s
z z and z z
?? ???]?] . 
Then 
2
1 2
2z z ?M equals : 
 (1) 1 (2) 4 
 (3) 3  (4) 2 
 Ans. (4) 
Sol. Let Z = x + iy 
 Then (x - 1)
2
 + y
2
 = 1     ?? (1) 
 & 
?H ?I ?H ?I 2 1 2 (2 ) 2 2
( 2 1) 2 (2)
x i iy
x y
?M ?M ?] ?? ?M ?K ?] ?? 
 Solving (1) & (2) we get 
 Either x = 1 or 
1
(3)
2 2
x?]??
?M 
 On solving (3) with (2) we get 
 For x = 1 ?? y = 1 ?? Z
2
 = 1 + i 
 & for 
 
1
1 1 1
2 1
2 2 2 2 2
i
x y Z
????
?] ?? ?] ?M ?? ?] ?K ?K????
?M ????
 
 Now  
 
?H ?I 2
1 2
2
2
2
1
1 2 (1 )
2
2
2
z z
i i
?M ????
?] ?K ?K ?M ?K ????
????
?] ?] 
7. Let the median and the mean deviation about the 
median of 7 observation 170, 125, 230, 190, 210, a, b 
be 170 and 
205
7
respectively. Then the mean 
deviation about the mean of these 7 observations is : 
 (1) 31 
 (2) 28 
 (3) 30 
 (4) 32 
 Ans. (3) 
 
Sol. Median = 170 ?? 125, a, b, 170, 190, 210, 230 
 Mean deviation about 
 Median = 
 
0 45 60 20 40 170 170 205
7 7
a b ?K ?K ?K ?K ?K ?M ?K ?M ?] 
 ?? a + b = 300 
 Mean =  
170 125 230 190 210
175
7
a b ?K ?K ?K ?K ?K ?K ?] 
 Mean deviation  
 About mean =  
 
50 175 175 5 15 35 55
7
a b ?K ?M ?K ?M ?K ?K ?K ?K = 30 
8. Let 
ˆˆ ˆ ˆ ˆ ˆ
5 3 , 2 4 a i j k b i j k ?] ?M ?K ?M ?] ?K ?M and 
 
?H ?I ?H ?I ?H ?I ˆˆˆ
. c a b i i i ?] ?? ?? ?? ?? Then 
?H ?I ˆ ˆˆ
c i j k ?? ?M ?K ?K is 
equal to 
 
         (1) –12  (2) –10 
 (3) –13  (4) –15 
 Ans. (1) 
Sol. 
ˆ ˆ
5 3 ?] ?M ?K ?M a i j k 
 
ˆ ˆˆ
2 4 ?] ?K ?M b i j k 
 
?H ?I ?H ?I ˆ ˆ ˆ
( ) ?? ?? ?] ?? ?M ?? a b i a i b b i a 
 5 ?] ?M ?M b a 
 
?H ?I ?H ?I ?H ?I ˆˆ
5 ?] ?M ?M ?? ?? b a i i 
 
?H ?I ?H ?I ˆ ˆ ˆ ˆ
11 23 ?] ?M ?K ?? ?? j k i i 
 
?H ?I ˆ ˆˆ
11 23 ?? ?K ?? k j i 
 
?H ?I ˆ ˆ
11 23 ???M j k 
 
?H ?I ˆ ˆˆ
. 11 23 12 ?M ?K ?K ?] ?M ?] ?M c i j k 
 
Page 4


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Thursday 01
st
 February, 2024)           TIME : 9 : 00 AM  to  12 : 00 NOON 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
 
SECTION-A 
1. A bag contains 8 balls, whose colours are either 
white or black. 4 balls are drawn at random 
without replacement and it was found that 2 balls 
are white and other 2 balls are black. The 
probability that the bag contains equal number of 
white and black balls is: 
 (1) 
2
5
 (2) 
2
7
 
 (3) 
1
7
  (4) 
1
5
 
 Ans. (2) 
Sol. 
 P(4W4B/2W2B) =  
 
(4 4 ) (2 2 /4 4 )
(2 6 ) (2 2 /2 6 ) (3 5 ) (2 2 /3 5 )
............. (6 2 ) (2 2 /6 2 )
P W B P W B W B
P W B P W B W B P W B P W B W B
P W B P W B W B
?? ?? ?K ?? ?K ?K ?? 
=
4 4
2 2
8
4
2 6 3 5 6 2
2 2 2 2 2 2
8 8 8
4 4 4
C C 1
5 C
C C C C C C 1 1 1
...
5 C 5 C 5 C
?? ?? ?? ?? ?? ?? ?K ?? ?K ?K ?? 
= 
2
7
 
 
2. The value of the integral 
  
4
4 4
0
:
sin (2 ) cos (2 )
xdx
equals
x x
?? ?K ?? 
 (1) 
2
2
8
?? (2) 
2
2
16
?? 
 (3) 
2
2
32
??  (4) 
2
2
64
?? 
 Ans. (3) 
Sol.  
4
4 4
0
sin (2 ) cos (2 )
xdx
x x
?? ?K ?? 
 Let 2x t ?] then 
1
2
dx dt ?] 
 
2
4 4
0
2
4 4
0
2
4 4
0
2
4 4
0
4 2
4
0
1
4 sin cos
1 2
4
sin cos
2 2
1
2
4 sin cos
2
8 sin cos
sec
2
8 tan 1
tdt
I
t t
t dt
I
t t
dt
I I
t t
dt
I
t t
tdt
I
t
?? ?? ?? ?? ?? ?? ????
?? ?? ?? ?] ?K ????
?M ????
????
?] ?? ?? ?? ?? ?M ?K ?M ?? ?? ?? ?? ?? ?? ?? ?? ?]?M
?K ?] ?K ?] ?K ?? ?? ?? ?? ?? 
 Let tant = y then sec
2
t dt = dy 
2
4
0
(1 )
2
8 1
?? ?K ?] ?K ?? y dy
I
y
?? 
2
2
0
2
1
1
y
dy
1
16
y
y
?? ?K ?? ?] ?K ?? 
 Put 
1
y p
y
?M?] 
 
?H ?I 2
2
dp
I
16
p 2
?? ?M??
?? ?] ?K ?? 
 
1
p
tan
16 2 2
?? ?M ?M??
???? ?? ????
?] ???? ????
???? ????
 
 
2
16 2
?] I
?? 
3. If A =
2 1
1 2
????
????
?M????
????
, B = 
1 0
1 1
????
????
????
, C = ABA
T
 and X 
= A
T
C
2
A, then det X is equal to : 
 (1) 243 
 (2) 729 
 (3) 27 
 (4) 891 
 Ans. (2) 
Sol. 
 
2 1
det( ) 3
1 2
1 0
det( ) 1
1 1
A A
B B
????
?] ?? ?] ????
?M????
????
????
?] ?? ?] ????
????
 
 Now C = ABA
T
 ?? det(C) = (dct (A))
2 
x det(B) 
 9 C ?] 
 Now |X| = |A
T
C
2
A| 
 = |A
T
| |C|
2
 |A| 
 = |A|
2
 |C|
2 
 = 9 x 81 
 = 729 
4. If tanA =
2 2
1
,tan
( 1) 1
?] ?K ?K ?K ?K x
B
x x x x x
  
 and 
 
?H ?I 1
3 2 1
2
tan ,0 , , ,
2
?M ?M ?M ?] ?K ?K ?\ ?\ C x x x A B C then
?? 
         A + B is equal to : 
 (1) C 
 (2) C ?? ?M 
 (3) 2 C ?? ?M 
 (4) 
2
C
?? ?M 
 Ans. (1) 
Sol. 
 Finding tan (A + B) we get 
 ?? tan (A + B) =  
2 2
2
1
( 1) 1 tan tan
1
1 tan tan
1
1
x
x x x x x A B
A B
x x
?K ?K ?K ?K ?K ?K ?] ?M ?M ?K?K
 
 ?? tan (A + B) = 
?H ?I ?H ?I ?H ?I ?H ?I 2
2
1 1 x x x
x x x
?K ?K ?K ?K 
?H ?I ?H ?I ?H ?I ?H ?I 2
2
2
1 1
1
tan( ) tan
x x x
x x x
x x
A B C
x x
A B C
?K ?K ?K ?K ?K?K
?K ?] ?] ?K?]
 
5. If n is the number of ways five different employees 
can sit into four indistinguishable offices where 
any office may have any number of persons 
including zero, then n is equal to: 
 (1) 47 
 (2) 53 
 (3) 51 
 (4) 43 
 Ans. (3) 
Sol. 
 Total ways to partition 5 into 4 parts are : 
 5, 0, 0, 0 ?? 1 way 
 4, 1, 0, 0 ?? 5!
4!
?] 5 ways 
 3, 2, 0, 0, 
5!
10
3!2!
???] ways 
 
5!
2,2,0,1 15
2!2!2!
???] ways 
 
3
5!
2,1,1,1 10
2!(1!) 3!
???] ways 
 
5!
3,1,1,0 10
3!2!
???] ways 
 Total ?? 1+5+10+15+10+10 = 51 ways 
 
6. LetS={ : 1 1 z C z ?? ?M ?] and
?H ?I ?H ?I ?H ?I 2 1 2 2 z z i z z ?M ?K ?M ?M ?] }. Let z
1
, z
2
 
S ?? be such that 
1 2
max min
z s z s
z z and z z
?? ???]?] . 
Then 
2
1 2
2z z ?M equals : 
 (1) 1 (2) 4 
 (3) 3  (4) 2 
 Ans. (4) 
Sol. Let Z = x + iy 
 Then (x - 1)
2
 + y
2
 = 1     ?? (1) 
 & 
?H ?I ?H ?I 2 1 2 (2 ) 2 2
( 2 1) 2 (2)
x i iy
x y
?M ?M ?] ?? ?M ?K ?] ?? 
 Solving (1) & (2) we get 
 Either x = 1 or 
1
(3)
2 2
x?]??
?M 
 On solving (3) with (2) we get 
 For x = 1 ?? y = 1 ?? Z
2
 = 1 + i 
 & for 
 
1
1 1 1
2 1
2 2 2 2 2
i
x y Z
????
?] ?? ?] ?M ?? ?] ?K ?K????
?M ????
 
 Now  
 
?H ?I 2
1 2
2
2
2
1
1 2 (1 )
2
2
2
z z
i i
?M ????
?] ?K ?K ?M ?K ????
????
?] ?] 
7. Let the median and the mean deviation about the 
median of 7 observation 170, 125, 230, 190, 210, a, b 
be 170 and 
205
7
respectively. Then the mean 
deviation about the mean of these 7 observations is : 
 (1) 31 
 (2) 28 
 (3) 30 
 (4) 32 
 Ans. (3) 
 
Sol. Median = 170 ?? 125, a, b, 170, 190, 210, 230 
 Mean deviation about 
 Median = 
 
0 45 60 20 40 170 170 205
7 7
a b ?K ?K ?K ?K ?K ?M ?K ?M ?] 
 ?? a + b = 300 
 Mean =  
170 125 230 190 210
175
7
a b ?K ?K ?K ?K ?K ?K ?] 
 Mean deviation  
 About mean =  
 
50 175 175 5 15 35 55
7
a b ?K ?M ?K ?M ?K ?K ?K ?K = 30 
8. Let 
ˆˆ ˆ ˆ ˆ ˆ
5 3 , 2 4 a i j k b i j k ?] ?M ?K ?M ?] ?K ?M and 
 
?H ?I ?H ?I ?H ?I ˆˆˆ
. c a b i i i ?] ?? ?? ?? ?? Then 
?H ?I ˆ ˆˆ
c i j k ?? ?M ?K ?K is 
equal to 
 
         (1) –12  (2) –10 
 (3) –13  (4) –15 
 Ans. (1) 
Sol. 
ˆ ˆ
5 3 ?] ?M ?K ?M a i j k 
 
ˆ ˆˆ
2 4 ?] ?K ?M b i j k 
 
?H ?I ?H ?I ˆ ˆ ˆ
( ) ?? ?? ?] ?? ?M ?? a b i a i b b i a 
 5 ?] ?M ?M b a 
 
?H ?I ?H ?I ?H ?I ˆˆ
5 ?] ?M ?M ?? ?? b a i i 
 
?H ?I ?H ?I ˆ ˆ ˆ ˆ
11 23 ?] ?M ?K ?? ?? j k i i 
 
?H ?I ˆ ˆˆ
11 23 ?? ?K ?? k j i 
 
?H ?I ˆ ˆ
11 23 ???M j k 
 
?H ?I ˆ ˆˆ
. 11 23 12 ?M ?K ?K ?] ?M ?] ?M c i j k 
 
9. Let S = { :( 3 2) ( 3 2) 10}.
x x
x R ?? ?K ?K ?M ?] 
Then the number of elements in S is : 
 (1) 4 (2) 0 
 (3) 2  (4) 1 
 Ans. (3) 
Sol. 
?H ?I ?H ?I x x
3 2 3 2 10 ?K ?K ?M ?] 
 Let 
?H ?I x
3 2 t ?K?] 
 
1
t 10
t
?K?] 
 t
2
 – 10t + 1 = 0 
 
10 100 4
t 5 2 6
2
???M
?] ?] ?? 
  
?H ?I ?H ?I x 2
3 2 3 2 ?K ?] ?? 
 x = 2 or x = –2 
 Number of solutions = 2 
10. The area enclosed by the curves xy + 4y = 16 and 
x + y = 6 is equal to : 
(1) 28 – 30 log 2
e
 (2) 30 – 28 log 2
e
 
 (3) 30 – 32 log 2
e
 (4) 32 – 30 log 2
e
 
 Ans. (3) 
Sol. xy + 4y = 16                      ,        x + y = 6 
 y(x + 4) = 16 ____(1)         ,        x + y = 6___(2) 
 on solving, (1) & (2) 
 we get x = 4, x = –2 
 
–4
–2 4 (6,0)
(0,6)
 
 Area = 
?H ?I 4
2
16
6
4
30 32ln2
x dx
x
?M???? ????
?M?M
???? ????
?K ???? ????
?]?M
??  
11. Let f : R ?? R  and g : R ?? R be defined as  
f(x) = 
e
x
log x , x 0
e , x 0
?M ?^ ?? ?? ?? ?? ?? ?? and 
 g(x) = 
x
x , x 0
e , x 0
?? ?? ?? ?? ?\ ?? ?? . Then, gof : R ?? R is : 
 (1) one-one but not onto 
 (2) neither one-one nor onto 
 (3) onto but not one-one 
 (4) both one-one and onto 
 Ans. (2) 
Sol. 
 g(f(x)) = 
( )
( ), ( ) 0
, ( ) 0
f x
f x f x
e f x
?? ?? ?? ?\ ?? 
 g(f(x)) = 
?} ?H ?I ln
, ,0
,(0,1)
ln , 1,
x
x
e
e
x
?M ?? ?M??
?? ?? ?? ?? ?? ?? ?? ?? ?? 
  
(1,0)
(0,1)
 
 Graph of g(f(x)) 
 g(f(x)) ?? Many one into  
12. If the system of equations 
 2x + 3y – z = 5  
 x + ?? y + 3z = –4 
 3x – y + ?? z = 7 
 has infinitely many solutions, then 13 ???? is equal 
to 
 (1) 1110 (2) 1120 
 (3) 1210  (4) 1220 
 Ans. (2) 
Page 5


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Thursday 01
st
 February, 2024)           TIME : 9 : 00 AM  to  12 : 00 NOON 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
 
SECTION-A 
1. A bag contains 8 balls, whose colours are either 
white or black. 4 balls are drawn at random 
without replacement and it was found that 2 balls 
are white and other 2 balls are black. The 
probability that the bag contains equal number of 
white and black balls is: 
 (1) 
2
5
 (2) 
2
7
 
 (3) 
1
7
  (4) 
1
5
 
 Ans. (2) 
Sol. 
 P(4W4B/2W2B) =  
 
(4 4 ) (2 2 /4 4 )
(2 6 ) (2 2 /2 6 ) (3 5 ) (2 2 /3 5 )
............. (6 2 ) (2 2 /6 2 )
P W B P W B W B
P W B P W B W B P W B P W B W B
P W B P W B W B
?? ?? ?K ?? ?K ?K ?? 
=
4 4
2 2
8
4
2 6 3 5 6 2
2 2 2 2 2 2
8 8 8
4 4 4
C C 1
5 C
C C C C C C 1 1 1
...
5 C 5 C 5 C
?? ?? ?? ?? ?? ?? ?K ?? ?K ?K ?? 
= 
2
7
 
 
2. The value of the integral 
  
4
4 4
0
:
sin (2 ) cos (2 )
xdx
equals
x x
?? ?K ?? 
 (1) 
2
2
8
?? (2) 
2
2
16
?? 
 (3) 
2
2
32
??  (4) 
2
2
64
?? 
 Ans. (3) 
Sol.  
4
4 4
0
sin (2 ) cos (2 )
xdx
x x
?? ?K ?? 
 Let 2x t ?] then 
1
2
dx dt ?] 
 
2
4 4
0
2
4 4
0
2
4 4
0
2
4 4
0
4 2
4
0
1
4 sin cos
1 2
4
sin cos
2 2
1
2
4 sin cos
2
8 sin cos
sec
2
8 tan 1
tdt
I
t t
t dt
I
t t
dt
I I
t t
dt
I
t t
tdt
I
t
?? ?? ?? ?? ?? ?? ????
?? ?? ?? ?] ?K ????
?M ????
????
?] ?? ?? ?? ?? ?M ?K ?M ?? ?? ?? ?? ?? ?? ?? ?? ?]?M
?K ?] ?K ?] ?K ?? ?? ?? ?? ?? 
 Let tant = y then sec
2
t dt = dy 
2
4
0
(1 )
2
8 1
?? ?K ?] ?K ?? y dy
I
y
?? 
2
2
0
2
1
1
y
dy
1
16
y
y
?? ?K ?? ?] ?K ?? 
 Put 
1
y p
y
?M?] 
 
?H ?I 2
2
dp
I
16
p 2
?? ?M??
?? ?] ?K ?? 
 
1
p
tan
16 2 2
?? ?M ?M??
???? ?? ????
?] ???? ????
???? ????
 
 
2
16 2
?] I
?? 
3. If A =
2 1
1 2
????
????
?M????
????
, B = 
1 0
1 1
????
????
????
, C = ABA
T
 and X 
= A
T
C
2
A, then det X is equal to : 
 (1) 243 
 (2) 729 
 (3) 27 
 (4) 891 
 Ans. (2) 
Sol. 
 
2 1
det( ) 3
1 2
1 0
det( ) 1
1 1
A A
B B
????
?] ?? ?] ????
?M????
????
????
?] ?? ?] ????
????
 
 Now C = ABA
T
 ?? det(C) = (dct (A))
2 
x det(B) 
 9 C ?] 
 Now |X| = |A
T
C
2
A| 
 = |A
T
| |C|
2
 |A| 
 = |A|
2
 |C|
2 
 = 9 x 81 
 = 729 
4. If tanA =
2 2
1
,tan
( 1) 1
?] ?K ?K ?K ?K x
B
x x x x x
  
 and 
 
?H ?I 1
3 2 1
2
tan ,0 , , ,
2
?M ?M ?M ?] ?K ?K ?\ ?\ C x x x A B C then
?? 
         A + B is equal to : 
 (1) C 
 (2) C ?? ?M 
 (3) 2 C ?? ?M 
 (4) 
2
C
?? ?M 
 Ans. (1) 
Sol. 
 Finding tan (A + B) we get 
 ?? tan (A + B) =  
2 2
2
1
( 1) 1 tan tan
1
1 tan tan
1
1
x
x x x x x A B
A B
x x
?K ?K ?K ?K ?K ?K ?] ?M ?M ?K?K
 
 ?? tan (A + B) = 
?H ?I ?H ?I ?H ?I ?H ?I 2
2
1 1 x x x
x x x
?K ?K ?K ?K 
?H ?I ?H ?I ?H ?I ?H ?I 2
2
2
1 1
1
tan( ) tan
x x x
x x x
x x
A B C
x x
A B C
?K ?K ?K ?K ?K?K
?K ?] ?] ?K?]
 
5. If n is the number of ways five different employees 
can sit into four indistinguishable offices where 
any office may have any number of persons 
including zero, then n is equal to: 
 (1) 47 
 (2) 53 
 (3) 51 
 (4) 43 
 Ans. (3) 
Sol. 
 Total ways to partition 5 into 4 parts are : 
 5, 0, 0, 0 ?? 1 way 
 4, 1, 0, 0 ?? 5!
4!
?] 5 ways 
 3, 2, 0, 0, 
5!
10
3!2!
???] ways 
 
5!
2,2,0,1 15
2!2!2!
???] ways 
 
3
5!
2,1,1,1 10
2!(1!) 3!
???] ways 
 
5!
3,1,1,0 10
3!2!
???] ways 
 Total ?? 1+5+10+15+10+10 = 51 ways 
 
6. LetS={ : 1 1 z C z ?? ?M ?] and
?H ?I ?H ?I ?H ?I 2 1 2 2 z z i z z ?M ?K ?M ?M ?] }. Let z
1
, z
2
 
S ?? be such that 
1 2
max min
z s z s
z z and z z
?? ???]?] . 
Then 
2
1 2
2z z ?M equals : 
 (1) 1 (2) 4 
 (3) 3  (4) 2 
 Ans. (4) 
Sol. Let Z = x + iy 
 Then (x - 1)
2
 + y
2
 = 1     ?? (1) 
 & 
?H ?I ?H ?I 2 1 2 (2 ) 2 2
( 2 1) 2 (2)
x i iy
x y
?M ?M ?] ?? ?M ?K ?] ?? 
 Solving (1) & (2) we get 
 Either x = 1 or 
1
(3)
2 2
x?]??
?M 
 On solving (3) with (2) we get 
 For x = 1 ?? y = 1 ?? Z
2
 = 1 + i 
 & for 
 
1
1 1 1
2 1
2 2 2 2 2
i
x y Z
????
?] ?? ?] ?M ?? ?] ?K ?K????
?M ????
 
 Now  
 
?H ?I 2
1 2
2
2
2
1
1 2 (1 )
2
2
2
z z
i i
?M ????
?] ?K ?K ?M ?K ????
????
?] ?] 
7. Let the median and the mean deviation about the 
median of 7 observation 170, 125, 230, 190, 210, a, b 
be 170 and 
205
7
respectively. Then the mean 
deviation about the mean of these 7 observations is : 
 (1) 31 
 (2) 28 
 (3) 30 
 (4) 32 
 Ans. (3) 
 
Sol. Median = 170 ?? 125, a, b, 170, 190, 210, 230 
 Mean deviation about 
 Median = 
 
0 45 60 20 40 170 170 205
7 7
a b ?K ?K ?K ?K ?K ?M ?K ?M ?] 
 ?? a + b = 300 
 Mean =  
170 125 230 190 210
175
7
a b ?K ?K ?K ?K ?K ?K ?] 
 Mean deviation  
 About mean =  
 
50 175 175 5 15 35 55
7
a b ?K ?M ?K ?M ?K ?K ?K ?K = 30 
8. Let 
ˆˆ ˆ ˆ ˆ ˆ
5 3 , 2 4 a i j k b i j k ?] ?M ?K ?M ?] ?K ?M and 
 
?H ?I ?H ?I ?H ?I ˆˆˆ
. c a b i i i ?] ?? ?? ?? ?? Then 
?H ?I ˆ ˆˆ
c i j k ?? ?M ?K ?K is 
equal to 
 
         (1) –12  (2) –10 
 (3) –13  (4) –15 
 Ans. (1) 
Sol. 
ˆ ˆ
5 3 ?] ?M ?K ?M a i j k 
 
ˆ ˆˆ
2 4 ?] ?K ?M b i j k 
 
?H ?I ?H ?I ˆ ˆ ˆ
( ) ?? ?? ?] ?? ?M ?? a b i a i b b i a 
 5 ?] ?M ?M b a 
 
?H ?I ?H ?I ?H ?I ˆˆ
5 ?] ?M ?M ?? ?? b a i i 
 
?H ?I ?H ?I ˆ ˆ ˆ ˆ
11 23 ?] ?M ?K ?? ?? j k i i 
 
?H ?I ˆ ˆˆ
11 23 ?? ?K ?? k j i 
 
?H ?I ˆ ˆ
11 23 ???M j k 
 
?H ?I ˆ ˆˆ
. 11 23 12 ?M ?K ?K ?] ?M ?] ?M c i j k 
 
9. Let S = { :( 3 2) ( 3 2) 10}.
x x
x R ?? ?K ?K ?M ?] 
Then the number of elements in S is : 
 (1) 4 (2) 0 
 (3) 2  (4) 1 
 Ans. (3) 
Sol. 
?H ?I ?H ?I x x
3 2 3 2 10 ?K ?K ?M ?] 
 Let 
?H ?I x
3 2 t ?K?] 
 
1
t 10
t
?K?] 
 t
2
 – 10t + 1 = 0 
 
10 100 4
t 5 2 6
2
???M
?] ?] ?? 
  
?H ?I ?H ?I x 2
3 2 3 2 ?K ?] ?? 
 x = 2 or x = –2 
 Number of solutions = 2 
10. The area enclosed by the curves xy + 4y = 16 and 
x + y = 6 is equal to : 
(1) 28 – 30 log 2
e
 (2) 30 – 28 log 2
e
 
 (3) 30 – 32 log 2
e
 (4) 32 – 30 log 2
e
 
 Ans. (3) 
Sol. xy + 4y = 16                      ,        x + y = 6 
 y(x + 4) = 16 ____(1)         ,        x + y = 6___(2) 
 on solving, (1) & (2) 
 we get x = 4, x = –2 
 
–4
–2 4 (6,0)
(0,6)
 
 Area = 
?H ?I 4
2
16
6
4
30 32ln2
x dx
x
?M???? ????
?M?M
???? ????
?K ???? ????
?]?M
??  
11. Let f : R ?? R  and g : R ?? R be defined as  
f(x) = 
e
x
log x , x 0
e , x 0
?M ?^ ?? ?? ?? ?? ?? ?? and 
 g(x) = 
x
x , x 0
e , x 0
?? ?? ?? ?? ?\ ?? ?? . Then, gof : R ?? R is : 
 (1) one-one but not onto 
 (2) neither one-one nor onto 
 (3) onto but not one-one 
 (4) both one-one and onto 
 Ans. (2) 
Sol. 
 g(f(x)) = 
( )
( ), ( ) 0
, ( ) 0
f x
f x f x
e f x
?? ?? ?? ?\ ?? 
 g(f(x)) = 
?} ?H ?I ln
, ,0
,(0,1)
ln , 1,
x
x
e
e
x
?M ?? ?M??
?? ?? ?? ?? ?? ?? ?? ?? ?? 
  
(1,0)
(0,1)
 
 Graph of g(f(x)) 
 g(f(x)) ?? Many one into  
12. If the system of equations 
 2x + 3y – z = 5  
 x + ?? y + 3z = –4 
 3x – y + ?? z = 7 
 has infinitely many solutions, then 13 ???? is equal 
to 
 (1) 1110 (2) 1120 
 (3) 1210  (4) 1220 
 Ans. (2) 
 
Sol. Using family of planes 
 2x + 3y –z – 5 = k
1
 (x + ?? y + 3z + 4) + k
2 
(3x – y 
+ ?? z - 7) 
 2 = k
1
 + 3k
2
, 3 = k
1
?? - k
2
, -1 = 3k
1
 + ?? k
2
, -5 = 
4k
1
 – 7k
2
 
 On solving we get  
 
2 1
13 1 16
, , 70,
19 19 13
k k ????
?M?M
?] ?] ?] ?M ?] 
 13 ?? ?? = 13 (-70)
16
13
1120
?M????
????
????
?] 
13. For 0 < ?? < ?? /2, if the eccentricity of the hyperbola 
x
2
 – y
2
cosec
2
?? = 5 is 7 times eccentricity of the 
ellipse x
2
 cosec
2
?? + y
2
 = 5, then the value of ?? is : 
 (1) 
6
?? (2) 
5
12
?? 
 (3) 
3
??  (4) 
4
?? 
 Ans. (3) 
Sol. 
 
2
2
1 sin
1 sin
h
c
e
e
?? ?? ?]?K
?]?M
 
 7
h c
e e ?] 
 
2 2
2
1 sin 7(1 sin )
6 3
sin
8 4
3
sin
2
3
????
?? ?? ?? ?? ?K ?] ?M ?]?]
?] ?] 
14. Let y = y(x) be the solution of the differential 
equation 
dy
dx
 = 2x (x + y)
3
 – x (x + y) – 1, y(0) = 1. 
Then, 
2
1 1
y
2 2
???? ????
?K ???? ????
???? ????
 equals : 
 (1) 
4
4 e ?K (2) 
3
3 e ?M 
 (3) 
2
1 e ?K  (4) 
1
2 e ?M 
 Ans. (4) 
Sol. 
3
2 ( ) ( ) 1 ?] ?K ?M ?K ?M dy
x x y x x y
dx
 
 ?K?] x y t 
 
3
1 2 1 ?M ?] ?M ?M dt
xt xt
dx
 
 
3
2
?] ?M dt
xdx
t t
 
 
4 2
tdt
xdx
2t t
?] ?M 
 Let 
2
?] t z  
 
?H ?I 2
dz
xdx
2 2z z
?] ?M ????
 
 
1
4
2
?] ????
?M ????
????
????
dz
xdx
z z
 
  
2
1
2
ln
?M ?]?K
z
x k
z
 
  
1
2
?] ?M z
e
 
15. Let f : R ?? R be defined as  
 f(x) = 
2
2
a bcos2x
; x 0
x
x cx 2 ; 0 x 1
2x 1 ; x 1
?M ?? ?\ ?? ?? ?? ?K ?K ?? ?? ?? ???K?^
?? ?? ?? 
 If f is continuous everywhere in R and m is the 
number of points where f is NOT differential then 
m + a + b + c equals : 
 (1) 1 (2) 4 
 (3) 3  (4) 2 
 Ans. (4) 
 
Read More
1 videos|239 docs|217 tests

FAQs on JEE Main 2024 February 1 Shift 1 Paper & Solutions - JEE Main & Advanced Mock Test Series 2025

1. What is the JEE Main exam and its importance for engineering aspirants?
Ans. The JEE Main exam is a national level entrance test conducted for admission to various undergraduate engineering programs in India. It serves as a gateway for aspiring engineers to gain entry into prestigious institutions like the National Institutes of Technology (NITs) and other government-funded technical institutes. The exam assesses a candidate's understanding of subjects like Physics, Chemistry, and Mathematics, and is crucial for determining eligibility for advanced studies in engineering.
2. What is the exam pattern for JEE Main?
Ans. The JEE Main exam consists of two papers: Paper 1 and Paper 2. Paper 1 is conducted in a Computer Based Test mode and consists of multiple-choice questions (MCQs) from Physics, Chemistry, and Mathematics. Paper 2 is for admission to architecture programs and includes questions on Mathematics, General Aptitude, and Drawing. Each paper is designed to assess the candidate's knowledge, analytical skills, and problem-solving abilities.
3. How can candidates prepare effectively for the JEE Main exam?
Ans. Effective preparation for the JEE Main exam involves a structured study plan that includes understanding the syllabus, practicing previous years' question papers, and taking mock tests. Candidates should focus on strengthening their concepts, time management, and problem-solving techniques. Joining coaching classes or study groups can also provide additional support and guidance. Regular revision and maintaining a balanced study schedule are essential for success.
4. What are the eligibility criteria for appearing in the JEE Main exam?
Ans. To be eligible for the JEE Main exam, candidates must have completed their 10+2 education with subjects Physics, Chemistry, and Mathematics. They should also meet the minimum percentage requirement set by the respective examination authorities. Additionally, there are age limits and other criteria that candidates must adhere to, which can vary based on the specific requirements of the institutes they aim to apply to.
5. What are the common mistakes to avoid while attempting the JEE Main exam?
Ans. Common mistakes to avoid during the JEE Main exam include not reading questions carefully, mismanaging time, neglecting to attempt easier questions first, and not marking answers properly on the answer sheet. Candidates should also avoid getting stuck on difficult questions and should instead move on and come back to them if time permits. Staying calm and focused is essential for maximizing performance during the exam.
Related Searches

JEE Main 2024 February 1 Shift 1 Paper & Solutions | JEE Main & Advanced Mock Test Series 2025

,

Previous Year Questions with Solutions

,

Free

,

practice quizzes

,

Objective type Questions

,

Viva Questions

,

JEE Main 2024 February 1 Shift 1 Paper & Solutions | JEE Main & Advanced Mock Test Series 2025

,

mock tests for examination

,

Semester Notes

,

Sample Paper

,

study material

,

past year papers

,

Important questions

,

MCQs

,

Extra Questions

,

video lectures

,

pdf

,

shortcuts and tricks

,

ppt

,

JEE Main 2024 February 1 Shift 1 Paper & Solutions | JEE Main & Advanced Mock Test Series 2025

,

Summary

,

Exam

;