JEE Exam  >  JEE Notes  >  JEE Main & Advanced Mock Test Series 2025  >  JEE Main 2024 January 27 Shift 1 Paper & Solutions

JEE Main 2024 January 27 Shift 1 Paper & Solutions | JEE Main & Advanced Mock Test Series 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Saturday 27
th
 January, 2024)            TIME : 9 : 00 AM  to  12 : 00 NOON 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
 
SECTION-A 
1. 
?H ?I n 1 2 n
r r 1
C k 8 C
?M ?K ?]?M if and only if : 
 (1) 2 2 k 3 ?\?? (2) 2 3 k 3 2 ?\?? 
 (3) 2 3 k 3 3 ?\?\ (4) 2 2 k 2 3 ?\?\ 
 Ans. (1) 
Sol. 
n-1
C
r
 = (k
2
 – 8) 
n
C
r+1 
 
r 0
r 1 0, r 0
?? ?K ?? ?? 
 
n 1
2 r
n
r 1
C
k 8
C
?M ?K ?]?M 
 
2
r 1
k 8
n
?K ?]?M 
 ?? 
2
k 8 0 ?M?^ 
 
?H ?I ?H ?I k 2 2 k 2 2 0 ?M ?K ?^ 
 
?H ?I ?H ?I k , 2 2 2 2, ?? ?M ?? ?M ?? ??    …(I) 
 ?| ?@ n r 1 ???K , 
r 1
1
n
?K ?? 
?? k
2
 – 8 ???@ 1 
  k
2
 – 9 ???@ 0 
  –3 ???@ k ?? 3  ….(II) 
 From equation (I) and (II) we get ?@ ?@ ?I ?H k 3, 2 2 2 2, 3
????
?? ?M ?M ??????
 
2. The distance, of the point (7, –2, 11) from the line 
x 6 y 4 z 8
1 0 3
?M ?M ?M ?]?] along the line 
x 5 y 1 z 5
2 3 6
?M ?M ?M ?]?]
?M , is : 
 (1) 12 (2) 14 
 (3) 18  (4) 21 
 Ans. (2) 
Sol. B = (2 ?? +7, ?M 3 ?? – 2, 6 ?? + 11) 
 
 Point B lies on  
x 6 y 4 z 8
1 0 3
?M ?M ?M ?]?] 
  
2 7 6 3 2 4 6 11 8
1 0 3
?? ?K ?M ?M ?? ?M ?M ?? ?K ?M ?]?] 
 ?M 3 ?? – 6 = 0 
 ?? = –2 
 B ?? (3, 4, –1) 
 
?H ?I ?H ?I ?H ?I 2 2 2
AB 7 3 4 2 11 1 ?] ?M ?K ?K ?K ?K 
  16 36 144 ?] ?K ?K 
  196 14 ?]?] 
3. Let x = x(t) and y = y(t) be solutions of the 
differential equations 
dx
ax 0
dt
?K?] and 
dy
by 0
dt
?K?] respectively, a, b ?? R. Given that 
x(0) = 2; y(0) = 1 and 3y(1) = 2x(1), the value of t, 
for which x(t) = y(t), is : 
 (1) 
2
3
log 2 (2) 
4
log 3 
 (3) 
3
log 4
 
 (4) 
4
3
log 2 
 Ans. (4) 
Page 2


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Saturday 27
th
 January, 2024)            TIME : 9 : 00 AM  to  12 : 00 NOON 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
 
SECTION-A 
1. 
?H ?I n 1 2 n
r r 1
C k 8 C
?M ?K ?]?M if and only if : 
 (1) 2 2 k 3 ?\?? (2) 2 3 k 3 2 ?\?? 
 (3) 2 3 k 3 3 ?\?\ (4) 2 2 k 2 3 ?\?\ 
 Ans. (1) 
Sol. 
n-1
C
r
 = (k
2
 – 8) 
n
C
r+1 
 
r 0
r 1 0, r 0
?? ?K ?? ?? 
 
n 1
2 r
n
r 1
C
k 8
C
?M ?K ?]?M 
 
2
r 1
k 8
n
?K ?]?M 
 ?? 
2
k 8 0 ?M?^ 
 
?H ?I ?H ?I k 2 2 k 2 2 0 ?M ?K ?^ 
 
?H ?I ?H ?I k , 2 2 2 2, ?? ?M ?? ?M ?? ??    …(I) 
 ?| ?@ n r 1 ???K , 
r 1
1
n
?K ?? 
?? k
2
 – 8 ???@ 1 
  k
2
 – 9 ???@ 0 
  –3 ???@ k ?? 3  ….(II) 
 From equation (I) and (II) we get ?@ ?@ ?I ?H k 3, 2 2 2 2, 3
????
?? ?M ?M ??????
 
2. The distance, of the point (7, –2, 11) from the line 
x 6 y 4 z 8
1 0 3
?M ?M ?M ?]?] along the line 
x 5 y 1 z 5
2 3 6
?M ?M ?M ?]?]
?M , is : 
 (1) 12 (2) 14 
 (3) 18  (4) 21 
 Ans. (2) 
Sol. B = (2 ?? +7, ?M 3 ?? – 2, 6 ?? + 11) 
 
 Point B lies on  
x 6 y 4 z 8
1 0 3
?M ?M ?M ?]?] 
  
2 7 6 3 2 4 6 11 8
1 0 3
?? ?K ?M ?M ?? ?M ?M ?? ?K ?M ?]?] 
 ?M 3 ?? – 6 = 0 
 ?? = –2 
 B ?? (3, 4, –1) 
 
?H ?I ?H ?I ?H ?I 2 2 2
AB 7 3 4 2 11 1 ?] ?M ?K ?K ?K ?K 
  16 36 144 ?] ?K ?K 
  196 14 ?]?] 
3. Let x = x(t) and y = y(t) be solutions of the 
differential equations 
dx
ax 0
dt
?K?] and 
dy
by 0
dt
?K?] respectively, a, b ?? R. Given that 
x(0) = 2; y(0) = 1 and 3y(1) = 2x(1), the value of t, 
for which x(t) = y(t), is : 
 (1) 
2
3
log 2 (2) 
4
log 3 
 (3) 
3
log 4
 
 (4) 
4
3
log 2 
 Ans. (4) 
 
 
Sol. 
dx
ax 0
dt
?K?] 
 
dx
adt
x
?]?M 
 
dx
a dt
x
?]?M
????
 
 ln | x | at c ?] ?M ?K 
 at t = 0, x = 2 
 ln 2 0 c ?]?K 
 ln x at ln 2 ?] ?M ?K 
 
at
x
e
2
?M ?] 
 
at
x 2e
?M ?]  ….(i) 
 
dy
by 0
dt
?K?] 
 
dy
bdt
y
?]?M 
 ln | y | bt ?] ?M ?K ?? 
 t = 0, y = 1 
 0 = 0 + ?? 
 y = e
–bt
  ….(ii) 
 According to question 
  3y(1) = 2x(1) 
  3e
–b
 = 2(2 e
–a
) 
  
a b
4
e
3
?M ?] 
 For x(t) = y(t)
 
 ?? 2e
–at
 = e
–bt
 
  2 = e
(a – b)t
 
  
t
4
2
3
????
?] ????
????
 
  
4
3
log 2 t ?] 
4. If (a, b) be the orthocentre of the triangle whose 
vertices are (1, 2), (2, 3) and (3, 1), and 
?H ?I b
2
1
a
I x sin 4x x dx ?]?M
?? , 
?H ?I b
2
2
a
I sin 4x x dx ?]?M
?? , then 
1
2
I
36
I
 is equal to : 
 (1) 72 (2) 88 
 (3) 80  (4) 66 
 Ans. (1) 
Sol. Equation of CE 
 y – 1 = ?M (x – 3) 
 x + y = 4 
 
 orthocentre lies on the line x + y = 4 
 so, a + b = 4 
 ?H ?I b
1
a
I x sin x(4 x) dx ?]?M
?? …(i) 
 Using king rule 
 ?H ?I ?H ?I b
1
a
I 4 x sin x(4 x) dx ?] ?M ?M ?? …(ii) 
 (i) + (ii) 
 
?H ?I b
1
a
2I 4sin x(4 x) dx ?]?M
?? 
 2I
1
 = 4I
2
 
 I
1
 = 2I
2
 
 
1
2
I
2
I
?] 
 
1
2
36I
72
I
?] 
5. If A denotes the sum of all the coefficients in the 
expansion of (1 – 3x + 10x
2
)
n
 and B denotes the 
sum of all  the  coefficients  in  the  expansion  of 
(1 + x
2
)
n
, then : 
 (1) A = B
3
 (2) 3A = B 
 (3) B = A
3  
(4) A = 3B 
 Ans. (1) 
Sol. Sum of coefficients in the expansion of 
 (1 – 3x + 10x
2
)
n
 = A 
 then A = (1 – 3 + 10)
n
 ?]  8
n
 (put x = 1) 
 and sum of coefficients in the expansion of 
 (1 + x
2
)
n
 = B 
 then B = (1 + 1)
n
 = 2
n
 
 A = B
3
 
Page 3


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Saturday 27
th
 January, 2024)            TIME : 9 : 00 AM  to  12 : 00 NOON 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
 
SECTION-A 
1. 
?H ?I n 1 2 n
r r 1
C k 8 C
?M ?K ?]?M if and only if : 
 (1) 2 2 k 3 ?\?? (2) 2 3 k 3 2 ?\?? 
 (3) 2 3 k 3 3 ?\?\ (4) 2 2 k 2 3 ?\?\ 
 Ans. (1) 
Sol. 
n-1
C
r
 = (k
2
 – 8) 
n
C
r+1 
 
r 0
r 1 0, r 0
?? ?K ?? ?? 
 
n 1
2 r
n
r 1
C
k 8
C
?M ?K ?]?M 
 
2
r 1
k 8
n
?K ?]?M 
 ?? 
2
k 8 0 ?M?^ 
 
?H ?I ?H ?I k 2 2 k 2 2 0 ?M ?K ?^ 
 
?H ?I ?H ?I k , 2 2 2 2, ?? ?M ?? ?M ?? ??    …(I) 
 ?| ?@ n r 1 ???K , 
r 1
1
n
?K ?? 
?? k
2
 – 8 ???@ 1 
  k
2
 – 9 ???@ 0 
  –3 ???@ k ?? 3  ….(II) 
 From equation (I) and (II) we get ?@ ?@ ?I ?H k 3, 2 2 2 2, 3
????
?? ?M ?M ??????
 
2. The distance, of the point (7, –2, 11) from the line 
x 6 y 4 z 8
1 0 3
?M ?M ?M ?]?] along the line 
x 5 y 1 z 5
2 3 6
?M ?M ?M ?]?]
?M , is : 
 (1) 12 (2) 14 
 (3) 18  (4) 21 
 Ans. (2) 
Sol. B = (2 ?? +7, ?M 3 ?? – 2, 6 ?? + 11) 
 
 Point B lies on  
x 6 y 4 z 8
1 0 3
?M ?M ?M ?]?] 
  
2 7 6 3 2 4 6 11 8
1 0 3
?? ?K ?M ?M ?? ?M ?M ?? ?K ?M ?]?] 
 ?M 3 ?? – 6 = 0 
 ?? = –2 
 B ?? (3, 4, –1) 
 
?H ?I ?H ?I ?H ?I 2 2 2
AB 7 3 4 2 11 1 ?] ?M ?K ?K ?K ?K 
  16 36 144 ?] ?K ?K 
  196 14 ?]?] 
3. Let x = x(t) and y = y(t) be solutions of the 
differential equations 
dx
ax 0
dt
?K?] and 
dy
by 0
dt
?K?] respectively, a, b ?? R. Given that 
x(0) = 2; y(0) = 1 and 3y(1) = 2x(1), the value of t, 
for which x(t) = y(t), is : 
 (1) 
2
3
log 2 (2) 
4
log 3 
 (3) 
3
log 4
 
 (4) 
4
3
log 2 
 Ans. (4) 
 
 
Sol. 
dx
ax 0
dt
?K?] 
 
dx
adt
x
?]?M 
 
dx
a dt
x
?]?M
????
 
 ln | x | at c ?] ?M ?K 
 at t = 0, x = 2 
 ln 2 0 c ?]?K 
 ln x at ln 2 ?] ?M ?K 
 
at
x
e
2
?M ?] 
 
at
x 2e
?M ?]  ….(i) 
 
dy
by 0
dt
?K?] 
 
dy
bdt
y
?]?M 
 ln | y | bt ?] ?M ?K ?? 
 t = 0, y = 1 
 0 = 0 + ?? 
 y = e
–bt
  ….(ii) 
 According to question 
  3y(1) = 2x(1) 
  3e
–b
 = 2(2 e
–a
) 
  
a b
4
e
3
?M ?] 
 For x(t) = y(t)
 
 ?? 2e
–at
 = e
–bt
 
  2 = e
(a – b)t
 
  
t
4
2
3
????
?] ????
????
 
  
4
3
log 2 t ?] 
4. If (a, b) be the orthocentre of the triangle whose 
vertices are (1, 2), (2, 3) and (3, 1), and 
?H ?I b
2
1
a
I x sin 4x x dx ?]?M
?? , 
?H ?I b
2
2
a
I sin 4x x dx ?]?M
?? , then 
1
2
I
36
I
 is equal to : 
 (1) 72 (2) 88 
 (3) 80  (4) 66 
 Ans. (1) 
Sol. Equation of CE 
 y – 1 = ?M (x – 3) 
 x + y = 4 
 
 orthocentre lies on the line x + y = 4 
 so, a + b = 4 
 ?H ?I b
1
a
I x sin x(4 x) dx ?]?M
?? …(i) 
 Using king rule 
 ?H ?I ?H ?I b
1
a
I 4 x sin x(4 x) dx ?] ?M ?M ?? …(ii) 
 (i) + (ii) 
 
?H ?I b
1
a
2I 4sin x(4 x) dx ?]?M
?? 
 2I
1
 = 4I
2
 
 I
1
 = 2I
2
 
 
1
2
I
2
I
?] 
 
1
2
36I
72
I
?] 
5. If A denotes the sum of all the coefficients in the 
expansion of (1 – 3x + 10x
2
)
n
 and B denotes the 
sum of all  the  coefficients  in  the  expansion  of 
(1 + x
2
)
n
, then : 
 (1) A = B
3
 (2) 3A = B 
 (3) B = A
3  
(4) A = 3B 
 Ans. (1) 
Sol. Sum of coefficients in the expansion of 
 (1 – 3x + 10x
2
)
n
 = A 
 then A = (1 – 3 + 10)
n
 ?]  8
n
 (put x = 1) 
 and sum of coefficients in the expansion of 
 (1 + x
2
)
n
 = B 
 then B = (1 + 1)
n
 = 2
n
 
 A = B
3
 
 
 
 
 
6. The number of common terms in the progressions 
4, 9, 14, 19, ...... , up to 25
th
 term and 3, 6, 9, 12, 
......., up to 37
th
 term is : 
 (1) 9 (2) 5 
 (3) 7  (4) 8 
 Ans. (3) 
Sol. 4, 9, 14, 19, …., up to 25
th
 term 
 T
25
 = 4 + (25 – 1) 5  = 4 + 120 = 124 
 3, 6, 9, 12, …, up to 37
th
 term 
 T
37
 = 3 + (37 – 1)3 = 3 + 108 = 111 
 Common difference of I
st
 series d
1
 = 5 
 Common difference of II
nd
 series d
2
 = 3 
 First common term = 9, and 
 their common difference = 15 (LCM of d
1
 and d
2
) 
 then common terms are 
 9, 24, 39, 54, 69, 84, 99 
7. If the shortest distance of the parabola y
2
 = 4x from 
the centre of the circle x
2 
+ y
2
 – 4x – 16y + 64 = 0 
is d, then d
2
 is equal to : 
 (1) 16 (2) 24 
 (3) 20  (4) 36 
 Ans. (3) 
Sol. Equation of normal to parabola 
 y = mx – 2m – m
3
 
 this normal passing through center of circle (2, 8) 
  8 = 2m – 2m – m
3
 
  m  = –2 
 So point P on parabola ?? (am
2
, –2am) = (4, 4) 
 And C = (2, 8) 
 PC = 4 16 20 ?K?] 
 d
2
 = 20 
8. If the shortest distance between the lines 
x 4 y 1 z
1 2 3
?M?K
?]?]
?M and 
x y 1 z 2
2 4 5
?M ?? ?K ?M ?]?]
?M is 
6
5
, then the sum of all possible values of ?? is : 
 (1) 5 (2) 8 
 (3) 7  (4) 10 
 Ans. (2) 
Sol. 
x 4 y 1 z
1 2 3
?M?K
?]?]
?M 
 
x y 1 z 2
2 4 5
?M ?? ?K ?M ?]?]
?M 
 
the shortest distance between the lines 
 
?H ?I ?H ?I 1 2
1 2
a b d d
d d
?M ?? ?? ?] ?? 
 
4 0 2
1 2 3
2 4 5
ˆ
i j k
1 2 3
2 4 5
???M
?M ?M ?] ?M ?M 
 
?H ?I ?H ?I ?H ?I 4 10 12 0 2 4 4
ˆ
2i 1j 0k
?? ?M ?M ?K ?M ?K ?M ?] ?M?K
 
 
?H ?I 2 4
6
5 5
???M
?] 
 3 = | ?? – 4| 
 ?? – 4 = ±3 
 ?? = 7, 1 
 Sum of all possible values of ?? is = 8 
9. If 
1
0
1
dx a b 2 c 3
3 x 1 x
?] ?K ?K ?K ?K ?K ?? , where 
a, b, c are rational numbers, then 2a + 3b – 4c is 
equal to : 
 (1) 4 (2) 10 
 (3) 7  (4) 8 
 Ans. (4) 
Sol. 
1
0
1
dx
3 x 1 x ?K ?K ?K ?? ?H ?I ?H ?I 1
0
3 x 1 x
dx
3 x 1 x
?K ?M ?K ?] ?K ?M ?K ?? 
 
?H ?I 1 1
0 0
1
3 x dx 1 x dx
2
????
?K ?M ?K ????
????
????
 
Page 4


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Saturday 27
th
 January, 2024)            TIME : 9 : 00 AM  to  12 : 00 NOON 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
 
SECTION-A 
1. 
?H ?I n 1 2 n
r r 1
C k 8 C
?M ?K ?]?M if and only if : 
 (1) 2 2 k 3 ?\?? (2) 2 3 k 3 2 ?\?? 
 (3) 2 3 k 3 3 ?\?\ (4) 2 2 k 2 3 ?\?\ 
 Ans. (1) 
Sol. 
n-1
C
r
 = (k
2
 – 8) 
n
C
r+1 
 
r 0
r 1 0, r 0
?? ?K ?? ?? 
 
n 1
2 r
n
r 1
C
k 8
C
?M ?K ?]?M 
 
2
r 1
k 8
n
?K ?]?M 
 ?? 
2
k 8 0 ?M?^ 
 
?H ?I ?H ?I k 2 2 k 2 2 0 ?M ?K ?^ 
 
?H ?I ?H ?I k , 2 2 2 2, ?? ?M ?? ?M ?? ??    …(I) 
 ?| ?@ n r 1 ???K , 
r 1
1
n
?K ?? 
?? k
2
 – 8 ???@ 1 
  k
2
 – 9 ???@ 0 
  –3 ???@ k ?? 3  ….(II) 
 From equation (I) and (II) we get ?@ ?@ ?I ?H k 3, 2 2 2 2, 3
????
?? ?M ?M ??????
 
2. The distance, of the point (7, –2, 11) from the line 
x 6 y 4 z 8
1 0 3
?M ?M ?M ?]?] along the line 
x 5 y 1 z 5
2 3 6
?M ?M ?M ?]?]
?M , is : 
 (1) 12 (2) 14 
 (3) 18  (4) 21 
 Ans. (2) 
Sol. B = (2 ?? +7, ?M 3 ?? – 2, 6 ?? + 11) 
 
 Point B lies on  
x 6 y 4 z 8
1 0 3
?M ?M ?M ?]?] 
  
2 7 6 3 2 4 6 11 8
1 0 3
?? ?K ?M ?M ?? ?M ?M ?? ?K ?M ?]?] 
 ?M 3 ?? – 6 = 0 
 ?? = –2 
 B ?? (3, 4, –1) 
 
?H ?I ?H ?I ?H ?I 2 2 2
AB 7 3 4 2 11 1 ?] ?M ?K ?K ?K ?K 
  16 36 144 ?] ?K ?K 
  196 14 ?]?] 
3. Let x = x(t) and y = y(t) be solutions of the 
differential equations 
dx
ax 0
dt
?K?] and 
dy
by 0
dt
?K?] respectively, a, b ?? R. Given that 
x(0) = 2; y(0) = 1 and 3y(1) = 2x(1), the value of t, 
for which x(t) = y(t), is : 
 (1) 
2
3
log 2 (2) 
4
log 3 
 (3) 
3
log 4
 
 (4) 
4
3
log 2 
 Ans. (4) 
 
 
Sol. 
dx
ax 0
dt
?K?] 
 
dx
adt
x
?]?M 
 
dx
a dt
x
?]?M
????
 
 ln | x | at c ?] ?M ?K 
 at t = 0, x = 2 
 ln 2 0 c ?]?K 
 ln x at ln 2 ?] ?M ?K 
 
at
x
e
2
?M ?] 
 
at
x 2e
?M ?]  ….(i) 
 
dy
by 0
dt
?K?] 
 
dy
bdt
y
?]?M 
 ln | y | bt ?] ?M ?K ?? 
 t = 0, y = 1 
 0 = 0 + ?? 
 y = e
–bt
  ….(ii) 
 According to question 
  3y(1) = 2x(1) 
  3e
–b
 = 2(2 e
–a
) 
  
a b
4
e
3
?M ?] 
 For x(t) = y(t)
 
 ?? 2e
–at
 = e
–bt
 
  2 = e
(a – b)t
 
  
t
4
2
3
????
?] ????
????
 
  
4
3
log 2 t ?] 
4. If (a, b) be the orthocentre of the triangle whose 
vertices are (1, 2), (2, 3) and (3, 1), and 
?H ?I b
2
1
a
I x sin 4x x dx ?]?M
?? , 
?H ?I b
2
2
a
I sin 4x x dx ?]?M
?? , then 
1
2
I
36
I
 is equal to : 
 (1) 72 (2) 88 
 (3) 80  (4) 66 
 Ans. (1) 
Sol. Equation of CE 
 y – 1 = ?M (x – 3) 
 x + y = 4 
 
 orthocentre lies on the line x + y = 4 
 so, a + b = 4 
 ?H ?I b
1
a
I x sin x(4 x) dx ?]?M
?? …(i) 
 Using king rule 
 ?H ?I ?H ?I b
1
a
I 4 x sin x(4 x) dx ?] ?M ?M ?? …(ii) 
 (i) + (ii) 
 
?H ?I b
1
a
2I 4sin x(4 x) dx ?]?M
?? 
 2I
1
 = 4I
2
 
 I
1
 = 2I
2
 
 
1
2
I
2
I
?] 
 
1
2
36I
72
I
?] 
5. If A denotes the sum of all the coefficients in the 
expansion of (1 – 3x + 10x
2
)
n
 and B denotes the 
sum of all  the  coefficients  in  the  expansion  of 
(1 + x
2
)
n
, then : 
 (1) A = B
3
 (2) 3A = B 
 (3) B = A
3  
(4) A = 3B 
 Ans. (1) 
Sol. Sum of coefficients in the expansion of 
 (1 – 3x + 10x
2
)
n
 = A 
 then A = (1 – 3 + 10)
n
 ?]  8
n
 (put x = 1) 
 and sum of coefficients in the expansion of 
 (1 + x
2
)
n
 = B 
 then B = (1 + 1)
n
 = 2
n
 
 A = B
3
 
 
 
 
 
6. The number of common terms in the progressions 
4, 9, 14, 19, ...... , up to 25
th
 term and 3, 6, 9, 12, 
......., up to 37
th
 term is : 
 (1) 9 (2) 5 
 (3) 7  (4) 8 
 Ans. (3) 
Sol. 4, 9, 14, 19, …., up to 25
th
 term 
 T
25
 = 4 + (25 – 1) 5  = 4 + 120 = 124 
 3, 6, 9, 12, …, up to 37
th
 term 
 T
37
 = 3 + (37 – 1)3 = 3 + 108 = 111 
 Common difference of I
st
 series d
1
 = 5 
 Common difference of II
nd
 series d
2
 = 3 
 First common term = 9, and 
 their common difference = 15 (LCM of d
1
 and d
2
) 
 then common terms are 
 9, 24, 39, 54, 69, 84, 99 
7. If the shortest distance of the parabola y
2
 = 4x from 
the centre of the circle x
2 
+ y
2
 – 4x – 16y + 64 = 0 
is d, then d
2
 is equal to : 
 (1) 16 (2) 24 
 (3) 20  (4) 36 
 Ans. (3) 
Sol. Equation of normal to parabola 
 y = mx – 2m – m
3
 
 this normal passing through center of circle (2, 8) 
  8 = 2m – 2m – m
3
 
  m  = –2 
 So point P on parabola ?? (am
2
, –2am) = (4, 4) 
 And C = (2, 8) 
 PC = 4 16 20 ?K?] 
 d
2
 = 20 
8. If the shortest distance between the lines 
x 4 y 1 z
1 2 3
?M?K
?]?]
?M and 
x y 1 z 2
2 4 5
?M ?? ?K ?M ?]?]
?M is 
6
5
, then the sum of all possible values of ?? is : 
 (1) 5 (2) 8 
 (3) 7  (4) 10 
 Ans. (2) 
Sol. 
x 4 y 1 z
1 2 3
?M?K
?]?]
?M 
 
x y 1 z 2
2 4 5
?M ?? ?K ?M ?]?]
?M 
 
the shortest distance between the lines 
 
?H ?I ?H ?I 1 2
1 2
a b d d
d d
?M ?? ?? ?] ?? 
 
4 0 2
1 2 3
2 4 5
ˆ
i j k
1 2 3
2 4 5
???M
?M ?M ?] ?M ?M 
 
?H ?I ?H ?I ?H ?I 4 10 12 0 2 4 4
ˆ
2i 1j 0k
?? ?M ?M ?K ?M ?K ?M ?] ?M?K
 
 
?H ?I 2 4
6
5 5
???M
?] 
 3 = | ?? – 4| 
 ?? – 4 = ±3 
 ?? = 7, 1 
 Sum of all possible values of ?? is = 8 
9. If 
1
0
1
dx a b 2 c 3
3 x 1 x
?] ?K ?K ?K ?K ?K ?? , where 
a, b, c are rational numbers, then 2a + 3b – 4c is 
equal to : 
 (1) 4 (2) 10 
 (3) 7  (4) 8 
 Ans. (4) 
Sol. 
1
0
1
dx
3 x 1 x ?K ?K ?K ?? ?H ?I ?H ?I 1
0
3 x 1 x
dx
3 x 1 x
?K ?M ?K ?] ?K ?M ?K ?? 
 
?H ?I 1 1
0 0
1
3 x dx 1 x dx
2
????
?K ?M ?K ????
????
????
 
 
 
 
?H ?I ?H ?I 1
3 3
2 2
0
3 x 2 1 x
1
2
2 3 3
????
?K?K
????
?M ????
????
????
 
 
?H ?I 3
2
1 2 2
8 3 3 2 1
2 3 3
???? ????
?M ?M ?M ???? ????
????
???? ????
 
 
1
8 3 3 2 2 1
3
????
?M ?M ?K ????
 
 
2
3 3 2 a b 2 c 3
3
?] ?M ?M ?] ?K ?K 
 
2
a 3, b , c 1
3
?] ?] ?M ?] ?M 
 2a + 3b – 4c = 6 – 2 + 4 = 8 
10. Let S = {l, 2, 3, ... , 10}. Suppose M is the set of all 
the subsets of S, then the relation 
 R = {(A, B): A ?? B ?? ?? ; A, B ?? M} is :  
 (1) symmetric and reflexive only 
 (2) reflexive only 
 (3) symmetric and transitive only 
 (4) symmetric only 
 Ans. (4) 
Sol. Let S = {1, 2, 3, …, 10} 
 R = {(A, B): A ?? B ?? ?? ; A, B ?? M} 
 For Reflexive, 
 M is subset of ‘S’ 
  So ?? ?@?? M 
 for ?? ?? ?? = ?? 
 ?? but relation is A ?? B ?? ?? 
 So it is not reflexive. 
 For symmetric,  
 ARB A ?? B ?? ?? , 
 ?? BRA ?? B ?? A ?? ?? , 
 So it is symmetric. 
 For transitive, 
 If  A = {(1, 2), (2, 3)} 
  B = {(2, 3), (3, 4)} 
  C = {(3, 4), (5, 6)} 
 ARB & BRC but A does not relate to C  
 So it not transitive  
11. If S = {z ?? C : |z – i| = |z + i| = |z–1|}, then, n(S) is: 
 (1) 1 (2) 0 
 (3) 3  (4) 2 
 Ans. (1) 
Sol. |z – i| = |z + i| = |z – 1| 
 
 ABC is a triangle. Hence its circum-centre will be 
the only point whose distance from A, B, C will be 
same. 
 So n(S) = 1 
12. Four  distinct  points  (2k, 3k),  (1, 0),  (0, 1) and 
(0, 0) lie on a circle for k equal to : 
 (1) 
2
13
 (2) 
3
13
 
 (3) 
5
13
 
 (4) 
1
13
 
 Ans. (3) 
Sol. (2k, 3k) will lie on circle whose diameter is AB. 
 
 (x – 1) (x) + (y – 1) (y) = 0 
 x
2
 + y
2
 – x – y = 0  …(i) 
 Satisfy (2k, 3k) in (i) 
 (2k)
2
 + (3k)
2
 – 2k – 3k = 0 
 13k
2
 – 5k = 0 
 k = 0, 
5
k
13
?] 
 hence 
5
k
13
?] 
 
Page 5


FINAL JEE –MAIN EXAMINATION – JANUARY, 2024 
(Held On Saturday 27
th
 January, 2024)            TIME : 9 : 00 AM  to  12 : 00 NOON 
MATHEMATICS TEST PAPER WITH SOLUTION 
 
 
 
 
 
SECTION-A 
1. 
?H ?I n 1 2 n
r r 1
C k 8 C
?M ?K ?]?M if and only if : 
 (1) 2 2 k 3 ?\?? (2) 2 3 k 3 2 ?\?? 
 (3) 2 3 k 3 3 ?\?\ (4) 2 2 k 2 3 ?\?\ 
 Ans. (1) 
Sol. 
n-1
C
r
 = (k
2
 – 8) 
n
C
r+1 
 
r 0
r 1 0, r 0
?? ?K ?? ?? 
 
n 1
2 r
n
r 1
C
k 8
C
?M ?K ?]?M 
 
2
r 1
k 8
n
?K ?]?M 
 ?? 
2
k 8 0 ?M?^ 
 
?H ?I ?H ?I k 2 2 k 2 2 0 ?M ?K ?^ 
 
?H ?I ?H ?I k , 2 2 2 2, ?? ?M ?? ?M ?? ??    …(I) 
 ?| ?@ n r 1 ???K , 
r 1
1
n
?K ?? 
?? k
2
 – 8 ???@ 1 
  k
2
 – 9 ???@ 0 
  –3 ???@ k ?? 3  ….(II) 
 From equation (I) and (II) we get ?@ ?@ ?I ?H k 3, 2 2 2 2, 3
????
?? ?M ?M ??????
 
2. The distance, of the point (7, –2, 11) from the line 
x 6 y 4 z 8
1 0 3
?M ?M ?M ?]?] along the line 
x 5 y 1 z 5
2 3 6
?M ?M ?M ?]?]
?M , is : 
 (1) 12 (2) 14 
 (3) 18  (4) 21 
 Ans. (2) 
Sol. B = (2 ?? +7, ?M 3 ?? – 2, 6 ?? + 11) 
 
 Point B lies on  
x 6 y 4 z 8
1 0 3
?M ?M ?M ?]?] 
  
2 7 6 3 2 4 6 11 8
1 0 3
?? ?K ?M ?M ?? ?M ?M ?? ?K ?M ?]?] 
 ?M 3 ?? – 6 = 0 
 ?? = –2 
 B ?? (3, 4, –1) 
 
?H ?I ?H ?I ?H ?I 2 2 2
AB 7 3 4 2 11 1 ?] ?M ?K ?K ?K ?K 
  16 36 144 ?] ?K ?K 
  196 14 ?]?] 
3. Let x = x(t) and y = y(t) be solutions of the 
differential equations 
dx
ax 0
dt
?K?] and 
dy
by 0
dt
?K?] respectively, a, b ?? R. Given that 
x(0) = 2; y(0) = 1 and 3y(1) = 2x(1), the value of t, 
for which x(t) = y(t), is : 
 (1) 
2
3
log 2 (2) 
4
log 3 
 (3) 
3
log 4
 
 (4) 
4
3
log 2 
 Ans. (4) 
 
 
Sol. 
dx
ax 0
dt
?K?] 
 
dx
adt
x
?]?M 
 
dx
a dt
x
?]?M
????
 
 ln | x | at c ?] ?M ?K 
 at t = 0, x = 2 
 ln 2 0 c ?]?K 
 ln x at ln 2 ?] ?M ?K 
 
at
x
e
2
?M ?] 
 
at
x 2e
?M ?]  ….(i) 
 
dy
by 0
dt
?K?] 
 
dy
bdt
y
?]?M 
 ln | y | bt ?] ?M ?K ?? 
 t = 0, y = 1 
 0 = 0 + ?? 
 y = e
–bt
  ….(ii) 
 According to question 
  3y(1) = 2x(1) 
  3e
–b
 = 2(2 e
–a
) 
  
a b
4
e
3
?M ?] 
 For x(t) = y(t)
 
 ?? 2e
–at
 = e
–bt
 
  2 = e
(a – b)t
 
  
t
4
2
3
????
?] ????
????
 
  
4
3
log 2 t ?] 
4. If (a, b) be the orthocentre of the triangle whose 
vertices are (1, 2), (2, 3) and (3, 1), and 
?H ?I b
2
1
a
I x sin 4x x dx ?]?M
?? , 
?H ?I b
2
2
a
I sin 4x x dx ?]?M
?? , then 
1
2
I
36
I
 is equal to : 
 (1) 72 (2) 88 
 (3) 80  (4) 66 
 Ans. (1) 
Sol. Equation of CE 
 y – 1 = ?M (x – 3) 
 x + y = 4 
 
 orthocentre lies on the line x + y = 4 
 so, a + b = 4 
 ?H ?I b
1
a
I x sin x(4 x) dx ?]?M
?? …(i) 
 Using king rule 
 ?H ?I ?H ?I b
1
a
I 4 x sin x(4 x) dx ?] ?M ?M ?? …(ii) 
 (i) + (ii) 
 
?H ?I b
1
a
2I 4sin x(4 x) dx ?]?M
?? 
 2I
1
 = 4I
2
 
 I
1
 = 2I
2
 
 
1
2
I
2
I
?] 
 
1
2
36I
72
I
?] 
5. If A denotes the sum of all the coefficients in the 
expansion of (1 – 3x + 10x
2
)
n
 and B denotes the 
sum of all  the  coefficients  in  the  expansion  of 
(1 + x
2
)
n
, then : 
 (1) A = B
3
 (2) 3A = B 
 (3) B = A
3  
(4) A = 3B 
 Ans. (1) 
Sol. Sum of coefficients in the expansion of 
 (1 – 3x + 10x
2
)
n
 = A 
 then A = (1 – 3 + 10)
n
 ?]  8
n
 (put x = 1) 
 and sum of coefficients in the expansion of 
 (1 + x
2
)
n
 = B 
 then B = (1 + 1)
n
 = 2
n
 
 A = B
3
 
 
 
 
 
6. The number of common terms in the progressions 
4, 9, 14, 19, ...... , up to 25
th
 term and 3, 6, 9, 12, 
......., up to 37
th
 term is : 
 (1) 9 (2) 5 
 (3) 7  (4) 8 
 Ans. (3) 
Sol. 4, 9, 14, 19, …., up to 25
th
 term 
 T
25
 = 4 + (25 – 1) 5  = 4 + 120 = 124 
 3, 6, 9, 12, …, up to 37
th
 term 
 T
37
 = 3 + (37 – 1)3 = 3 + 108 = 111 
 Common difference of I
st
 series d
1
 = 5 
 Common difference of II
nd
 series d
2
 = 3 
 First common term = 9, and 
 their common difference = 15 (LCM of d
1
 and d
2
) 
 then common terms are 
 9, 24, 39, 54, 69, 84, 99 
7. If the shortest distance of the parabola y
2
 = 4x from 
the centre of the circle x
2 
+ y
2
 – 4x – 16y + 64 = 0 
is d, then d
2
 is equal to : 
 (1) 16 (2) 24 
 (3) 20  (4) 36 
 Ans. (3) 
Sol. Equation of normal to parabola 
 y = mx – 2m – m
3
 
 this normal passing through center of circle (2, 8) 
  8 = 2m – 2m – m
3
 
  m  = –2 
 So point P on parabola ?? (am
2
, –2am) = (4, 4) 
 And C = (2, 8) 
 PC = 4 16 20 ?K?] 
 d
2
 = 20 
8. If the shortest distance between the lines 
x 4 y 1 z
1 2 3
?M?K
?]?]
?M and 
x y 1 z 2
2 4 5
?M ?? ?K ?M ?]?]
?M is 
6
5
, then the sum of all possible values of ?? is : 
 (1) 5 (2) 8 
 (3) 7  (4) 10 
 Ans. (2) 
Sol. 
x 4 y 1 z
1 2 3
?M?K
?]?]
?M 
 
x y 1 z 2
2 4 5
?M ?? ?K ?M ?]?]
?M 
 
the shortest distance between the lines 
 
?H ?I ?H ?I 1 2
1 2
a b d d
d d
?M ?? ?? ?] ?? 
 
4 0 2
1 2 3
2 4 5
ˆ
i j k
1 2 3
2 4 5
???M
?M ?M ?] ?M ?M 
 
?H ?I ?H ?I ?H ?I 4 10 12 0 2 4 4
ˆ
2i 1j 0k
?? ?M ?M ?K ?M ?K ?M ?] ?M?K
 
 
?H ?I 2 4
6
5 5
???M
?] 
 3 = | ?? – 4| 
 ?? – 4 = ±3 
 ?? = 7, 1 
 Sum of all possible values of ?? is = 8 
9. If 
1
0
1
dx a b 2 c 3
3 x 1 x
?] ?K ?K ?K ?K ?K ?? , where 
a, b, c are rational numbers, then 2a + 3b – 4c is 
equal to : 
 (1) 4 (2) 10 
 (3) 7  (4) 8 
 Ans. (4) 
Sol. 
1
0
1
dx
3 x 1 x ?K ?K ?K ?? ?H ?I ?H ?I 1
0
3 x 1 x
dx
3 x 1 x
?K ?M ?K ?] ?K ?M ?K ?? 
 
?H ?I 1 1
0 0
1
3 x dx 1 x dx
2
????
?K ?M ?K ????
????
????
 
 
 
 
?H ?I ?H ?I 1
3 3
2 2
0
3 x 2 1 x
1
2
2 3 3
????
?K?K
????
?M ????
????
????
 
 
?H ?I 3
2
1 2 2
8 3 3 2 1
2 3 3
???? ????
?M ?M ?M ???? ????
????
???? ????
 
 
1
8 3 3 2 2 1
3
????
?M ?M ?K ????
 
 
2
3 3 2 a b 2 c 3
3
?] ?M ?M ?] ?K ?K 
 
2
a 3, b , c 1
3
?] ?] ?M ?] ?M 
 2a + 3b – 4c = 6 – 2 + 4 = 8 
10. Let S = {l, 2, 3, ... , 10}. Suppose M is the set of all 
the subsets of S, then the relation 
 R = {(A, B): A ?? B ?? ?? ; A, B ?? M} is :  
 (1) symmetric and reflexive only 
 (2) reflexive only 
 (3) symmetric and transitive only 
 (4) symmetric only 
 Ans. (4) 
Sol. Let S = {1, 2, 3, …, 10} 
 R = {(A, B): A ?? B ?? ?? ; A, B ?? M} 
 For Reflexive, 
 M is subset of ‘S’ 
  So ?? ?@?? M 
 for ?? ?? ?? = ?? 
 ?? but relation is A ?? B ?? ?? 
 So it is not reflexive. 
 For symmetric,  
 ARB A ?? B ?? ?? , 
 ?? BRA ?? B ?? A ?? ?? , 
 So it is symmetric. 
 For transitive, 
 If  A = {(1, 2), (2, 3)} 
  B = {(2, 3), (3, 4)} 
  C = {(3, 4), (5, 6)} 
 ARB & BRC but A does not relate to C  
 So it not transitive  
11. If S = {z ?? C : |z – i| = |z + i| = |z–1|}, then, n(S) is: 
 (1) 1 (2) 0 
 (3) 3  (4) 2 
 Ans. (1) 
Sol. |z – i| = |z + i| = |z – 1| 
 
 ABC is a triangle. Hence its circum-centre will be 
the only point whose distance from A, B, C will be 
same. 
 So n(S) = 1 
12. Four  distinct  points  (2k, 3k),  (1, 0),  (0, 1) and 
(0, 0) lie on a circle for k equal to : 
 (1) 
2
13
 (2) 
3
13
 
 (3) 
5
13
 
 (4) 
1
13
 
 Ans. (3) 
Sol. (2k, 3k) will lie on circle whose diameter is AB. 
 
 (x – 1) (x) + (y – 1) (y) = 0 
 x
2
 + y
2
 – x – y = 0  …(i) 
 Satisfy (2k, 3k) in (i) 
 (2k)
2
 + (3k)
2
 – 2k – 3k = 0 
 13k
2
 – 5k = 0 
 k = 0, 
5
k
13
?] 
 hence 
5
k
13
?] 
 
 
 
 
 
13. Consider the function. 
 
?H ?I ?H ?I 2
2
sin x 3
x [x]
a 7x 12 x
, x 3
b x 7x 12
f (x) 2 , x 3
b , x 3
?M ?M ?? ?M?M
?? ?\ ?M?K
?? ?? ???]?^
?? ?? ?] ?? ?? ?? ??  
 Where [x] denotes the greatest integer less than or 
equal to x. If S denotes the set of all ordered pairs 
(a, b) such that f(x) is continuous at x = 3, then the 
number of elements in S is : 
 (1) 2 (2) Infinitely many 
 (3) 4  (4) 1 
 Ans. (4) 
Sol. 
?H ?I ?H ?I 2
2
7x 12 x
a
f 3
b x 7x 12
?M ?M?M
?] ?M?K
  (for f(x) to be cont.) 
 ?? f(3
–
) = 
?H ?I ?H ?I ?H ?I ?H ?I x 3 x 4
a
;x 3
b x 3 x 4
?M?M
?M ?\ ?M?M
 ??  
a
b
?M 
 Hence 
?H ?I a
f 3
b
?M ?M ?] 
 Then 
?H ?I ?H ?I x 3
sin x 3
lim
x 3
f 3 2 2
?K ?? ?M ????
????
????
?M ?K ????
?]?] and 
 f(3) = b. 
 Hence f(3) = f(3
+
) = f(3
–
) 
 ?? b = 2 = 
a
b
?M 
 b = 2, a = –4 
 Hence only 1 ordered pair (–4, 2). 
14. Let a
1
, a
2
, ….. a
10
 be 10 observations such that 
10
k
k 1
a 50
?] ?] ?? and 
k j
k j
a a 1100
?B?\
???]
?? . Then the 
standard deviation of a
1
, a
2
, .., a
10
 is equal to : 
 (1) 5 (2) 5 
 (3) 10  (4) 115 
 Ans. (2) 
Sol. 
10
k
k 1
a 50
?] ?] ?? 
 a
1
 + a
2
 + … + a
10
 = 50 ….(i) 
 
k j
k j
a a 1100
?B?\
?] ?? ....(ii) 
 If a
1
 + a
2
 + … + a
10
 = 50. 
 (a
1
 + a
2
 + … + a
10
)
2 
= 2500 
 ?? 10
2
i k j
i 1 k j
a 2 a a 2500
?]?\
?K?]
????
 
 ?? ?H ?I 10
2
i
i 1
a 2500 2 1100
?] ?]?M
?? 
  
10
2
i
i 1
a 300
?] ?] ?? , Standard deviation ‘ ?? ’ 
 
2
2
2
i i
a a
300 50
10 10 10 10
????
????
????
???? ?] ?M ?] ?M ????
???? ????
????
????
????
30 25 5 ?] ?M ?] 
15. The length of the chord of the ellipse 
2 2
x y
1
25 16
?K?] , 
whose mid point is 
2
1,
5
????
????
????
, is equal to : 
 (1) 
1691
5
 (2) 
2009
5
 
 (3) 
1741
5
 
 (4) 
1541
5
 
 Ans. (1) 
Sol. Equation of chord with given middle point. 
 T = S
1
 
 
x y 1 1
25 40 25 100
?K ?] ?K 
 
8x 5y 8 2
200 200
?K?K
?] 
 
10 8x
y
5
?M ?]  …(i) 
Read More
1 videos|239 docs|217 tests
Related Searches

Important questions

,

JEE Main 2024 January 27 Shift 1 Paper & Solutions | JEE Main & Advanced Mock Test Series 2025

,

Viva Questions

,

Objective type Questions

,

mock tests for examination

,

study material

,

video lectures

,

JEE Main 2024 January 27 Shift 1 Paper & Solutions | JEE Main & Advanced Mock Test Series 2025

,

Previous Year Questions with Solutions

,

practice quizzes

,

past year papers

,

Exam

,

JEE Main 2024 January 27 Shift 1 Paper & Solutions | JEE Main & Advanced Mock Test Series 2025

,

Sample Paper

,

Summary

,

Free

,

Semester Notes

,

shortcuts and tricks

,

MCQs

,

ppt

,

Extra Questions

,

pdf

;