Page 1
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Tuesday 09
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let the line L intersect the lines
x – 2 = –y = z – 1, 2 (x + 1) = 2(y – 1) = z + 1
and be parallel to the line
x 2 y 1 z 2
3 1 2
?M ?M ?M ?]?] .
Then which of the following points lies on L ?
(1)
1
– , 1 , 1
3
????
????
????
(2)
1
– , 1 , 1
3
????
?M ????
????
(3)
1
– , 1 , 1
3
????
?M?M
????
????
(4)
1
– , 1 , 1
3
????
?M ????
????
Ans. (2)
Sol.
dr's of line (3, 1, 2)
M(2+ ?? , – ?@ ?? , 1+ ?@ ?? ?I
N 1 , 1 , –1
2 2
???? ????
?M ?K ?K ?K ?? ????
????
L
1
L
2
1
x 2 y z 1
L :
1 1 1
?M?M
?] ?] ?] ?? ?M 2
x 1 y 1 z 1
L :
1 1
1
2 2
?K ?M ?K ?] ?] ?] ?? dr of line MN will be
3 , 1 ,2
2 2
????
?\ ?K ?? ?M ?M ?M ?? ?M ?K ?? ?M ?? ?^ & it will be
proportional to <3, 1, 2>
3 1
2
2 2
3 1 2
????
?K ?? ?M ?M ?M ?? ?M ?K ?? ?M ?? ?| ?] ?] 4 ?? + ?? = –6 4 + 3 ?? = 0
?@ ?? ?@ 4 2
&
3 3
?? ?] ?M ?? ?] ?M ?|?@ Coordinate of M will be <
2 4 1
, ,
3 3 3
????
?M ????
????
and equation of required line will be.
2 4 1
x y z
3 3 3
k
3 1 2
?M ?M ?K ?] ?] ?] So any point on this line will be
2 4 1
3k, k, 2k
3 3 3
????
?K ?K ?M ?K ????
????
2 1
3k
3 3
?K ?] ?M ?? ?@ 1
k
3
?]?M
?|?@ Point lie on the line for
1
k
3
?]?M is
1
,1, 1
3
????
?M?M
????
????
?@ 2. The parabola y
2
= 4x divides the area of the circle
x
2
+ y
2
= 5 in two parts. The area of the smaller
part is equal to :
(1)
1
2 2
5sin
3 5
?M????
?K ????
????
(2)
1
1 2
5sin
3 5
?M????
?K ????
????
(3)
1
1 2
5 sin
3 5
?M????
?K ????
????
(4)
1
2 2
5 sin
3 5
?M????
?K ????
????
Ans. (1)
Sol. y
2
= 4x
x
2
+ y
2
= 5
?| ?@ Area of shaded region as shown in the figure
will be
Page 2
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Tuesday 09
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let the line L intersect the lines
x – 2 = –y = z – 1, 2 (x + 1) = 2(y – 1) = z + 1
and be parallel to the line
x 2 y 1 z 2
3 1 2
?M ?M ?M ?]?] .
Then which of the following points lies on L ?
(1)
1
– , 1 , 1
3
????
????
????
(2)
1
– , 1 , 1
3
????
?M ????
????
(3)
1
– , 1 , 1
3
????
?M?M
????
????
(4)
1
– , 1 , 1
3
????
?M ????
????
Ans. (2)
Sol.
dr's of line (3, 1, 2)
M(2+ ?? , – ?@ ?? , 1+ ?@ ?? ?I
N 1 , 1 , –1
2 2
???? ????
?M ?K ?K ?K ?? ????
????
L
1
L
2
1
x 2 y z 1
L :
1 1 1
?M?M
?] ?] ?] ?? ?M 2
x 1 y 1 z 1
L :
1 1
1
2 2
?K ?M ?K ?] ?] ?] ?? dr of line MN will be
3 , 1 ,2
2 2
????
?\ ?K ?? ?M ?M ?M ?? ?M ?K ?? ?M ?? ?^ & it will be
proportional to <3, 1, 2>
3 1
2
2 2
3 1 2
????
?K ?? ?M ?M ?M ?? ?M ?K ?? ?M ?? ?| ?] ?] 4 ?? + ?? = –6 4 + 3 ?? = 0
?@ ?? ?@ 4 2
&
3 3
?? ?] ?M ?? ?] ?M ?|?@ Coordinate of M will be <
2 4 1
, ,
3 3 3
????
?M ????
????
and equation of required line will be.
2 4 1
x y z
3 3 3
k
3 1 2
?M ?M ?K ?] ?] ?] So any point on this line will be
2 4 1
3k, k, 2k
3 3 3
????
?K ?K ?M ?K ????
????
2 1
3k
3 3
?K ?] ?M ?? ?@ 1
k
3
?]?M
?|?@ Point lie on the line for
1
k
3
?]?M is
1
,1, 1
3
????
?M?M
????
????
?@ 2. The parabola y
2
= 4x divides the area of the circle
x
2
+ y
2
= 5 in two parts. The area of the smaller
part is equal to :
(1)
1
2 2
5sin
3 5
?M????
?K ????
????
(2)
1
1 2
5sin
3 5
?M????
?K ????
????
(3)
1
1 2
5 sin
3 5
?M????
?K ????
????
(4)
1
2 2
5 sin
3 5
?M????
?K ????
????
Ans. (1)
Sol. y
2
= 4x
x
2
+ y
2
= 5
?| ?@ Area of shaded region as shown in the figure
will be
A(1,2)
B(1, –2)
C( 5, 0)
1 5
2
1
0 1
A 4x dx 5 x dx ?] ?K ?M ????
1
5
3
2 1
2
1
0
4 x 5 x
x 5 x sin
3 2 2 5
?M ????
????
?] ?? ?K ?M ?K ????
????
????
????
1
1 5 5 1
sin
3 4 2 5
?M ?? ????
?] ?K ?M ????
????
?@ ?| ?@ Required Area = 2 A
1
1
2 5 1
5sin
3 2 5
?M ?? ????
?] ?K ?M ????
????
1
2 1
5 sin
3 2 5
?M ??????
?] ?K ?M????
????
1
2 1
5cos
3 5
?M ?]?K
1
2 2
5sin
3 5
?M????
?]?K
????
????
3. The solution curve, of the differential equation
dy dy
2y 3 5
dx dx
?K?] , passing through the point
(0, 1) is a conic, whose vertex lies on the line :
(1) 2x + 3y = 9 (2) 2x + 3y = –9
(3) 2x + 3y = –6 (4) 2x + 3y = 6
Ans. (1)
Sol. ?H ?I dy
2y 5 3
dx
?M ?] ?M
?H ?I 2y 5 dy 3dx ?M ?] ?M
2
y
2 5y 3x
2
?? ?M ?] ?M ?K ??
Curve passes through (0, 1)
?@ ???@?? = – 4
Curve will be
2
5 3
y 3 x
2 4
?? ?? ?? ?? ?M ?] ?M ?M ?? ?? ?? ?? ?? ?? ?? ??
?| Vertex of parabola will be
3 5
,
4 2
????
????
????
2x + 3y = 9
4. A ray of light coming from the point P (1, 2) gets
reflected from the point Q on the x-axis and then
passes through the point R (4, 3). If the point S (h,
k) is such that PQRS is a parallelogram, then hk
2
is
equal to :
(1) 80 (2) 90
(3) 60 (4) 70
Ans. (4)
Sol.
Image of P wrt x-axis will be P'(1, –2) equation of
line joining P'R will be
?H ?I 5
y 3 x 4
3
?M ?] ?M
Above line will meet x-axis at Q where
11
y 0 x
5
?] ?? ?]
11
Q ,0
5
????
?| ????
????
PQRS is parallelogram so their diagonals will
bisects each other
Page 3
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Tuesday 09
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let the line L intersect the lines
x – 2 = –y = z – 1, 2 (x + 1) = 2(y – 1) = z + 1
and be parallel to the line
x 2 y 1 z 2
3 1 2
?M ?M ?M ?]?] .
Then which of the following points lies on L ?
(1)
1
– , 1 , 1
3
????
????
????
(2)
1
– , 1 , 1
3
????
?M ????
????
(3)
1
– , 1 , 1
3
????
?M?M
????
????
(4)
1
– , 1 , 1
3
????
?M ????
????
Ans. (2)
Sol.
dr's of line (3, 1, 2)
M(2+ ?? , – ?@ ?? , 1+ ?@ ?? ?I
N 1 , 1 , –1
2 2
???? ????
?M ?K ?K ?K ?? ????
????
L
1
L
2
1
x 2 y z 1
L :
1 1 1
?M?M
?] ?] ?] ?? ?M 2
x 1 y 1 z 1
L :
1 1
1
2 2
?K ?M ?K ?] ?] ?] ?? dr of line MN will be
3 , 1 ,2
2 2
????
?\ ?K ?? ?M ?M ?M ?? ?M ?K ?? ?M ?? ?^ & it will be
proportional to <3, 1, 2>
3 1
2
2 2
3 1 2
????
?K ?? ?M ?M ?M ?? ?M ?K ?? ?M ?? ?| ?] ?] 4 ?? + ?? = –6 4 + 3 ?? = 0
?@ ?? ?@ 4 2
&
3 3
?? ?] ?M ?? ?] ?M ?|?@ Coordinate of M will be <
2 4 1
, ,
3 3 3
????
?M ????
????
and equation of required line will be.
2 4 1
x y z
3 3 3
k
3 1 2
?M ?M ?K ?] ?] ?] So any point on this line will be
2 4 1
3k, k, 2k
3 3 3
????
?K ?K ?M ?K ????
????
2 1
3k
3 3
?K ?] ?M ?? ?@ 1
k
3
?]?M
?|?@ Point lie on the line for
1
k
3
?]?M is
1
,1, 1
3
????
?M?M
????
????
?@ 2. The parabola y
2
= 4x divides the area of the circle
x
2
+ y
2
= 5 in two parts. The area of the smaller
part is equal to :
(1)
1
2 2
5sin
3 5
?M????
?K ????
????
(2)
1
1 2
5sin
3 5
?M????
?K ????
????
(3)
1
1 2
5 sin
3 5
?M????
?K ????
????
(4)
1
2 2
5 sin
3 5
?M????
?K ????
????
Ans. (1)
Sol. y
2
= 4x
x
2
+ y
2
= 5
?| ?@ Area of shaded region as shown in the figure
will be
A(1,2)
B(1, –2)
C( 5, 0)
1 5
2
1
0 1
A 4x dx 5 x dx ?] ?K ?M ????
1
5
3
2 1
2
1
0
4 x 5 x
x 5 x sin
3 2 2 5
?M ????
????
?] ?? ?K ?M ?K ????
????
????
????
1
1 5 5 1
sin
3 4 2 5
?M ?? ????
?] ?K ?M ????
????
?@ ?| ?@ Required Area = 2 A
1
1
2 5 1
5sin
3 2 5
?M ?? ????
?] ?K ?M ????
????
1
2 1
5 sin
3 2 5
?M ??????
?] ?K ?M????
????
1
2 1
5cos
3 5
?M ?]?K
1
2 2
5sin
3 5
?M????
?]?K
????
????
3. The solution curve, of the differential equation
dy dy
2y 3 5
dx dx
?K?] , passing through the point
(0, 1) is a conic, whose vertex lies on the line :
(1) 2x + 3y = 9 (2) 2x + 3y = –9
(3) 2x + 3y = –6 (4) 2x + 3y = 6
Ans. (1)
Sol. ?H ?I dy
2y 5 3
dx
?M ?] ?M
?H ?I 2y 5 dy 3dx ?M ?] ?M
2
y
2 5y 3x
2
?? ?M ?] ?M ?K ??
Curve passes through (0, 1)
?@ ???@?? = – 4
Curve will be
2
5 3
y 3 x
2 4
?? ?? ?? ?? ?M ?] ?M ?M ?? ?? ?? ?? ?? ?? ?? ??
?| Vertex of parabola will be
3 5
,
4 2
????
????
????
2x + 3y = 9
4. A ray of light coming from the point P (1, 2) gets
reflected from the point Q on the x-axis and then
passes through the point R (4, 3). If the point S (h,
k) is such that PQRS is a parallelogram, then hk
2
is
equal to :
(1) 80 (2) 90
(3) 60 (4) 70
Ans. (4)
Sol.
Image of P wrt x-axis will be P'(1, –2) equation of
line joining P'R will be
?H ?I 5
y 3 x 4
3
?M ?] ?M
Above line will meet x-axis at Q where
11
y 0 x
5
?] ?? ?]
11
Q ,0
5
????
?| ????
????
PQRS is parallelogram so their diagonals will
bisects each other
?? ?@ 11
h
4 1 2 3 k 0
5
&
2 2 2 2
?K ?K ?K ?K ?]?]
?@?? ?@ 14
h & k 5
5
?]?]
2 2
14
hk 5 70
5
?| ?] ?? ?] ?@ 5. Let ?? , ?? ?? R. If the system of equations
3x + 5y + ?? z = 3
7x + 11y –9z = 2
97x + 155y – 189z = ?? ?@ has infinitely many solutions, then ?? +2 ?? is equal
to :
(1) 25 (2) 24
(3) 27 (4) 22
Ans. (1)
Sol. 3x + 5y + ?? z = 3
7x + 11y –9z = 2
97x + 155y – 189z = ?? ?@ ?@ ?@?@?@ 93x + 155y + 31 ?? z = 93
97x + 155y – 189z = ?? ?@ ?@ – – + –
–4x + (31 ?? + 189)z = 93 – ?? ?@ 1085x + 1705y – 1395z = 310
1067x + 1705y – 2079z = 11 ??
?@ – – + –
18x + 684z = 310 – 11?? ?@ ?@ –36x + 9(31 ?? + 189)z = 9(93 – ?? )
36x + 1368z = 2 (310 – 11 ?? )
(279 ?? ?@ + 3069)z = 1457 – 31 ?? ?@ ?@ for infinite solutions -
3069 341
279 31
?M?M
?? ?] ?]
1457
31
???]
1457 682 775
2 25
31 31
?M ?? ?K ?? ?] ?] ?]
6. The coefficient of x
70
in x
2
(1 + x)
98
+ x
3
(1 + x)
97
+
x
4
(1 + x)
96
+ ........ +x
54
(1 + x)
46
is
99
C
p
–
46
C
q
.
Then a possible value to p + q is :
(1) 55 (2) 61
(3) 68 (4) 83
Ans. (4)
Sol.
?H ?I ?H ?I ?H ?I 98 96
2 3 97 4
x 1 x x 1 x x 1 x ....... ?K ?K ?K ?K ?K ?K
?H ?I 46
54
x 1 x ?K
Coeff. of
70 98 97 96
68 67 66
x : C C C .......... ?K ?K ?K
47 46
17 16
C C ?K
46 47 98
30 30 30
C C ........... C ?] ?K ?K
?H ?I 46 46 47 98 46
31 30 30 30 31
C C C .. .. .. .. .. . C – C ?] ?K ?K ?K
47 47 98 46
31 30 30 31
C C . . . . . . . . . . . C – C ?] ?K ?K
......
99 46 99 46
31 31 p q
C C C C ?] ?M ?] ?M
Possible values of (p + q) are 62, 83, 99, 46
?? p + q = 83
7. Let
?H ?I e
2 tan x 1
dx x log sin x cos x C
3 tan x 2
?M ?] ?? ?K ?? ?K ?? ?K ?K ?? , where C is the constant of integration.
Then
?? ???K
?? is equal to :
(1) 3 (2) 1
(3) 4 (4) 7
Ans. (3)
Sol.
2 tan x
dx
3 tan x
?M ?K ??
2cos x sin x
dx
3cos x sin x
?M ?] ?K ??
2 cosx – sinx = A(3cosx + sinx) + B(cosx – 3sinx)
3A + B = 2
A – 3B = –1
Page 4
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Tuesday 09
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let the line L intersect the lines
x – 2 = –y = z – 1, 2 (x + 1) = 2(y – 1) = z + 1
and be parallel to the line
x 2 y 1 z 2
3 1 2
?M ?M ?M ?]?] .
Then which of the following points lies on L ?
(1)
1
– , 1 , 1
3
????
????
????
(2)
1
– , 1 , 1
3
????
?M ????
????
(3)
1
– , 1 , 1
3
????
?M?M
????
????
(4)
1
– , 1 , 1
3
????
?M ????
????
Ans. (2)
Sol.
dr's of line (3, 1, 2)
M(2+ ?? , – ?@ ?? , 1+ ?@ ?? ?I
N 1 , 1 , –1
2 2
???? ????
?M ?K ?K ?K ?? ????
????
L
1
L
2
1
x 2 y z 1
L :
1 1 1
?M?M
?] ?] ?] ?? ?M 2
x 1 y 1 z 1
L :
1 1
1
2 2
?K ?M ?K ?] ?] ?] ?? dr of line MN will be
3 , 1 ,2
2 2
????
?\ ?K ?? ?M ?M ?M ?? ?M ?K ?? ?M ?? ?^ & it will be
proportional to <3, 1, 2>
3 1
2
2 2
3 1 2
????
?K ?? ?M ?M ?M ?? ?M ?K ?? ?M ?? ?| ?] ?] 4 ?? + ?? = –6 4 + 3 ?? = 0
?@ ?? ?@ 4 2
&
3 3
?? ?] ?M ?? ?] ?M ?|?@ Coordinate of M will be <
2 4 1
, ,
3 3 3
????
?M ????
????
and equation of required line will be.
2 4 1
x y z
3 3 3
k
3 1 2
?M ?M ?K ?] ?] ?] So any point on this line will be
2 4 1
3k, k, 2k
3 3 3
????
?K ?K ?M ?K ????
????
2 1
3k
3 3
?K ?] ?M ?? ?@ 1
k
3
?]?M
?|?@ Point lie on the line for
1
k
3
?]?M is
1
,1, 1
3
????
?M?M
????
????
?@ 2. The parabola y
2
= 4x divides the area of the circle
x
2
+ y
2
= 5 in two parts. The area of the smaller
part is equal to :
(1)
1
2 2
5sin
3 5
?M????
?K ????
????
(2)
1
1 2
5sin
3 5
?M????
?K ????
????
(3)
1
1 2
5 sin
3 5
?M????
?K ????
????
(4)
1
2 2
5 sin
3 5
?M????
?K ????
????
Ans. (1)
Sol. y
2
= 4x
x
2
+ y
2
= 5
?| ?@ Area of shaded region as shown in the figure
will be
A(1,2)
B(1, –2)
C( 5, 0)
1 5
2
1
0 1
A 4x dx 5 x dx ?] ?K ?M ????
1
5
3
2 1
2
1
0
4 x 5 x
x 5 x sin
3 2 2 5
?M ????
????
?] ?? ?K ?M ?K ????
????
????
????
1
1 5 5 1
sin
3 4 2 5
?M ?? ????
?] ?K ?M ????
????
?@ ?| ?@ Required Area = 2 A
1
1
2 5 1
5sin
3 2 5
?M ?? ????
?] ?K ?M ????
????
1
2 1
5 sin
3 2 5
?M ??????
?] ?K ?M????
????
1
2 1
5cos
3 5
?M ?]?K
1
2 2
5sin
3 5
?M????
?]?K
????
????
3. The solution curve, of the differential equation
dy dy
2y 3 5
dx dx
?K?] , passing through the point
(0, 1) is a conic, whose vertex lies on the line :
(1) 2x + 3y = 9 (2) 2x + 3y = –9
(3) 2x + 3y = –6 (4) 2x + 3y = 6
Ans. (1)
Sol. ?H ?I dy
2y 5 3
dx
?M ?] ?M
?H ?I 2y 5 dy 3dx ?M ?] ?M
2
y
2 5y 3x
2
?? ?M ?] ?M ?K ??
Curve passes through (0, 1)
?@ ???@?? = – 4
Curve will be
2
5 3
y 3 x
2 4
?? ?? ?? ?? ?M ?] ?M ?M ?? ?? ?? ?? ?? ?? ?? ??
?| Vertex of parabola will be
3 5
,
4 2
????
????
????
2x + 3y = 9
4. A ray of light coming from the point P (1, 2) gets
reflected from the point Q on the x-axis and then
passes through the point R (4, 3). If the point S (h,
k) is such that PQRS is a parallelogram, then hk
2
is
equal to :
(1) 80 (2) 90
(3) 60 (4) 70
Ans. (4)
Sol.
Image of P wrt x-axis will be P'(1, –2) equation of
line joining P'R will be
?H ?I 5
y 3 x 4
3
?M ?] ?M
Above line will meet x-axis at Q where
11
y 0 x
5
?] ?? ?]
11
Q ,0
5
????
?| ????
????
PQRS is parallelogram so their diagonals will
bisects each other
?? ?@ 11
h
4 1 2 3 k 0
5
&
2 2 2 2
?K ?K ?K ?K ?]?]
?@?? ?@ 14
h & k 5
5
?]?]
2 2
14
hk 5 70
5
?| ?] ?? ?] ?@ 5. Let ?? , ?? ?? R. If the system of equations
3x + 5y + ?? z = 3
7x + 11y –9z = 2
97x + 155y – 189z = ?? ?@ has infinitely many solutions, then ?? +2 ?? is equal
to :
(1) 25 (2) 24
(3) 27 (4) 22
Ans. (1)
Sol. 3x + 5y + ?? z = 3
7x + 11y –9z = 2
97x + 155y – 189z = ?? ?@ ?@ ?@?@?@ 93x + 155y + 31 ?? z = 93
97x + 155y – 189z = ?? ?@ ?@ – – + –
–4x + (31 ?? + 189)z = 93 – ?? ?@ 1085x + 1705y – 1395z = 310
1067x + 1705y – 2079z = 11 ??
?@ – – + –
18x + 684z = 310 – 11?? ?@ ?@ –36x + 9(31 ?? + 189)z = 9(93 – ?? )
36x + 1368z = 2 (310 – 11 ?? )
(279 ?? ?@ + 3069)z = 1457 – 31 ?? ?@ ?@ for infinite solutions -
3069 341
279 31
?M?M
?? ?] ?]
1457
31
???]
1457 682 775
2 25
31 31
?M ?? ?K ?? ?] ?] ?]
6. The coefficient of x
70
in x
2
(1 + x)
98
+ x
3
(1 + x)
97
+
x
4
(1 + x)
96
+ ........ +x
54
(1 + x)
46
is
99
C
p
–
46
C
q
.
Then a possible value to p + q is :
(1) 55 (2) 61
(3) 68 (4) 83
Ans. (4)
Sol.
?H ?I ?H ?I ?H ?I 98 96
2 3 97 4
x 1 x x 1 x x 1 x ....... ?K ?K ?K ?K ?K ?K
?H ?I 46
54
x 1 x ?K
Coeff. of
70 98 97 96
68 67 66
x : C C C .......... ?K ?K ?K
47 46
17 16
C C ?K
46 47 98
30 30 30
C C ........... C ?] ?K ?K
?H ?I 46 46 47 98 46
31 30 30 30 31
C C C .. .. .. .. .. . C – C ?] ?K ?K ?K
47 47 98 46
31 30 30 31
C C . . . . . . . . . . . C – C ?] ?K ?K
......
99 46 99 46
31 31 p q
C C C C ?] ?M ?] ?M
Possible values of (p + q) are 62, 83, 99, 46
?? p + q = 83
7. Let
?H ?I e
2 tan x 1
dx x log sin x cos x C
3 tan x 2
?M ?] ?? ?K ?? ?K ?? ?K ?K ?? , where C is the constant of integration.
Then
?? ???K
?? is equal to :
(1) 3 (2) 1
(3) 4 (4) 7
Ans. (3)
Sol.
2 tan x
dx
3 tan x
?M ?K ??
2cos x sin x
dx
3cos x sin x
?M ?] ?K ??
2 cosx – sinx = A(3cosx + sinx) + B(cosx – 3sinx)
3A + B = 2
A – 3B = –1
?@ ??
1 1
A ,B
2 2
?]?]
2cos x sin x
dx
3cos x sin x
?M ?| ?K ??
x 1
ln 3cos x sin x C
2 2
?] ?K ?K ?K
?H ?I 1
x ln 3cos x sin x C
2
?] ?K ?K ?K
?H ?I 1
x ln sin x cos x C
2
?] ?? ?K ?? ?K ?? ?K
?? = 1, ?? = 1, ?? = 3
3
1 4
1
?? ?| ?? ?K ?] ?K ?] ??
8. A variable line L passes through the point (3, 5)
and intersects the positive coordinate axes at the
points A and B. The minimum area of the triangle
OAB, where O is the origin, is :
(1) 30 (2) 25
(3) 40 (4) 35
Ans. (1)
Sol.
x y
1
a b
?K?]
3 5
1
a b
?K?] ?? ?@ 5a
b ,a 3
a 3
?]?^
?M
(0, b)
O A
(a, 0)
(3, 5)
B
?H ?I 1 1 5a
A ab a
2 2 a 3
?]?]
?M 5 a
2 a 3
?R ?]??
?M
2
5 a 9 9
2 a 3
???? ?M?K
?]????
?M ????
5 9
a 3
2 a 3
?] ?K ?K????
?M ????
5 9
a 3 6 30
2 a 3
????
?] ?M ?K ?K ?? ????
?M ????
9. Let
?H ?I ?H ?I ?{ ?} 1
cos cos 60 cos 60 , 0,2
8
?? ?M ?? ?M ?? ?? ?? ?? ??
Then, the sum of all ?{ ?} 0, 2 ?? ?? ?? , where cos 3 ??
attains its maximum value, is :
(1) 9 ?? (2) 18 ?@??
(3) 6 ?@?? (4) 15 ?@??
Ans. (3)
Sol. We know that
(cos ?? ) (cos (60° – ?? ) (cos (60° + ?? )
1
cos3
4
?]??
So equation reduces to
1 1
cos3
4 8
????
?? ?@ 1
cos3
2
????
?? ?@ 1 1
cos3
2 2
?M ?? ?? ??
?? maximum value of cos3 ?? =
1
2
, here
?? 3 2n
3
?? ?? ?] ?? ??
2n
3 9
????
?? ?] ??
As ?? ?? [0, 2 ?? ] possible values are
5 7 11 13 17
, , , , ,
9 9 9 9 9 9
?? ?? ?? ?? ?? ?? ????
???]
????
????
Whose sum is
5 7 11 13 17
9 9 9 9 9 9
?? ?? ?? ?? ?? ?? ?K ?K ?K ?K ?K
54
6
9
?? ?] ?] ??
????
Page 5
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Tuesday 09
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let the line L intersect the lines
x – 2 = –y = z – 1, 2 (x + 1) = 2(y – 1) = z + 1
and be parallel to the line
x 2 y 1 z 2
3 1 2
?M ?M ?M ?]?] .
Then which of the following points lies on L ?
(1)
1
– , 1 , 1
3
????
????
????
(2)
1
– , 1 , 1
3
????
?M ????
????
(3)
1
– , 1 , 1
3
????
?M?M
????
????
(4)
1
– , 1 , 1
3
????
?M ????
????
Ans. (2)
Sol.
dr's of line (3, 1, 2)
M(2+ ?? , – ?@ ?? , 1+ ?@ ?? ?I
N 1 , 1 , –1
2 2
???? ????
?M ?K ?K ?K ?? ????
????
L
1
L
2
1
x 2 y z 1
L :
1 1 1
?M?M
?] ?] ?] ?? ?M 2
x 1 y 1 z 1
L :
1 1
1
2 2
?K ?M ?K ?] ?] ?] ?? dr of line MN will be
3 , 1 ,2
2 2
????
?\ ?K ?? ?M ?M ?M ?? ?M ?K ?? ?M ?? ?^ & it will be
proportional to <3, 1, 2>
3 1
2
2 2
3 1 2
????
?K ?? ?M ?M ?M ?? ?M ?K ?? ?M ?? ?| ?] ?] 4 ?? + ?? = –6 4 + 3 ?? = 0
?@ ?? ?@ 4 2
&
3 3
?? ?] ?M ?? ?] ?M ?|?@ Coordinate of M will be <
2 4 1
, ,
3 3 3
????
?M ????
????
and equation of required line will be.
2 4 1
x y z
3 3 3
k
3 1 2
?M ?M ?K ?] ?] ?] So any point on this line will be
2 4 1
3k, k, 2k
3 3 3
????
?K ?K ?M ?K ????
????
2 1
3k
3 3
?K ?] ?M ?? ?@ 1
k
3
?]?M
?|?@ Point lie on the line for
1
k
3
?]?M is
1
,1, 1
3
????
?M?M
????
????
?@ 2. The parabola y
2
= 4x divides the area of the circle
x
2
+ y
2
= 5 in two parts. The area of the smaller
part is equal to :
(1)
1
2 2
5sin
3 5
?M????
?K ????
????
(2)
1
1 2
5sin
3 5
?M????
?K ????
????
(3)
1
1 2
5 sin
3 5
?M????
?K ????
????
(4)
1
2 2
5 sin
3 5
?M????
?K ????
????
Ans. (1)
Sol. y
2
= 4x
x
2
+ y
2
= 5
?| ?@ Area of shaded region as shown in the figure
will be
A(1,2)
B(1, –2)
C( 5, 0)
1 5
2
1
0 1
A 4x dx 5 x dx ?] ?K ?M ????
1
5
3
2 1
2
1
0
4 x 5 x
x 5 x sin
3 2 2 5
?M ????
????
?] ?? ?K ?M ?K ????
????
????
????
1
1 5 5 1
sin
3 4 2 5
?M ?? ????
?] ?K ?M ????
????
?@ ?| ?@ Required Area = 2 A
1
1
2 5 1
5sin
3 2 5
?M ?? ????
?] ?K ?M ????
????
1
2 1
5 sin
3 2 5
?M ??????
?] ?K ?M????
????
1
2 1
5cos
3 5
?M ?]?K
1
2 2
5sin
3 5
?M????
?]?K
????
????
3. The solution curve, of the differential equation
dy dy
2y 3 5
dx dx
?K?] , passing through the point
(0, 1) is a conic, whose vertex lies on the line :
(1) 2x + 3y = 9 (2) 2x + 3y = –9
(3) 2x + 3y = –6 (4) 2x + 3y = 6
Ans. (1)
Sol. ?H ?I dy
2y 5 3
dx
?M ?] ?M
?H ?I 2y 5 dy 3dx ?M ?] ?M
2
y
2 5y 3x
2
?? ?M ?] ?M ?K ??
Curve passes through (0, 1)
?@ ???@?? = – 4
Curve will be
2
5 3
y 3 x
2 4
?? ?? ?? ?? ?M ?] ?M ?M ?? ?? ?? ?? ?? ?? ?? ??
?| Vertex of parabola will be
3 5
,
4 2
????
????
????
2x + 3y = 9
4. A ray of light coming from the point P (1, 2) gets
reflected from the point Q on the x-axis and then
passes through the point R (4, 3). If the point S (h,
k) is such that PQRS is a parallelogram, then hk
2
is
equal to :
(1) 80 (2) 90
(3) 60 (4) 70
Ans. (4)
Sol.
Image of P wrt x-axis will be P'(1, –2) equation of
line joining P'R will be
?H ?I 5
y 3 x 4
3
?M ?] ?M
Above line will meet x-axis at Q where
11
y 0 x
5
?] ?? ?]
11
Q ,0
5
????
?| ????
????
PQRS is parallelogram so their diagonals will
bisects each other
?? ?@ 11
h
4 1 2 3 k 0
5
&
2 2 2 2
?K ?K ?K ?K ?]?]
?@?? ?@ 14
h & k 5
5
?]?]
2 2
14
hk 5 70
5
?| ?] ?? ?] ?@ 5. Let ?? , ?? ?? R. If the system of equations
3x + 5y + ?? z = 3
7x + 11y –9z = 2
97x + 155y – 189z = ?? ?@ has infinitely many solutions, then ?? +2 ?? is equal
to :
(1) 25 (2) 24
(3) 27 (4) 22
Ans. (1)
Sol. 3x + 5y + ?? z = 3
7x + 11y –9z = 2
97x + 155y – 189z = ?? ?@ ?@ ?@?@?@ 93x + 155y + 31 ?? z = 93
97x + 155y – 189z = ?? ?@ ?@ – – + –
–4x + (31 ?? + 189)z = 93 – ?? ?@ 1085x + 1705y – 1395z = 310
1067x + 1705y – 2079z = 11 ??
?@ – – + –
18x + 684z = 310 – 11?? ?@ ?@ –36x + 9(31 ?? + 189)z = 9(93 – ?? )
36x + 1368z = 2 (310 – 11 ?? )
(279 ?? ?@ + 3069)z = 1457 – 31 ?? ?@ ?@ for infinite solutions -
3069 341
279 31
?M?M
?? ?] ?]
1457
31
???]
1457 682 775
2 25
31 31
?M ?? ?K ?? ?] ?] ?]
6. The coefficient of x
70
in x
2
(1 + x)
98
+ x
3
(1 + x)
97
+
x
4
(1 + x)
96
+ ........ +x
54
(1 + x)
46
is
99
C
p
–
46
C
q
.
Then a possible value to p + q is :
(1) 55 (2) 61
(3) 68 (4) 83
Ans. (4)
Sol.
?H ?I ?H ?I ?H ?I 98 96
2 3 97 4
x 1 x x 1 x x 1 x ....... ?K ?K ?K ?K ?K ?K
?H ?I 46
54
x 1 x ?K
Coeff. of
70 98 97 96
68 67 66
x : C C C .......... ?K ?K ?K
47 46
17 16
C C ?K
46 47 98
30 30 30
C C ........... C ?] ?K ?K
?H ?I 46 46 47 98 46
31 30 30 30 31
C C C .. .. .. .. .. . C – C ?] ?K ?K ?K
47 47 98 46
31 30 30 31
C C . . . . . . . . . . . C – C ?] ?K ?K
......
99 46 99 46
31 31 p q
C C C C ?] ?M ?] ?M
Possible values of (p + q) are 62, 83, 99, 46
?? p + q = 83
7. Let
?H ?I e
2 tan x 1
dx x log sin x cos x C
3 tan x 2
?M ?] ?? ?K ?? ?K ?? ?K ?K ?? , where C is the constant of integration.
Then
?? ???K
?? is equal to :
(1) 3 (2) 1
(3) 4 (4) 7
Ans. (3)
Sol.
2 tan x
dx
3 tan x
?M ?K ??
2cos x sin x
dx
3cos x sin x
?M ?] ?K ??
2 cosx – sinx = A(3cosx + sinx) + B(cosx – 3sinx)
3A + B = 2
A – 3B = –1
?@ ??
1 1
A ,B
2 2
?]?]
2cos x sin x
dx
3cos x sin x
?M ?| ?K ??
x 1
ln 3cos x sin x C
2 2
?] ?K ?K ?K
?H ?I 1
x ln 3cos x sin x C
2
?] ?K ?K ?K
?H ?I 1
x ln sin x cos x C
2
?] ?? ?K ?? ?K ?? ?K
?? = 1, ?? = 1, ?? = 3
3
1 4
1
?? ?| ?? ?K ?] ?K ?] ??
8. A variable line L passes through the point (3, 5)
and intersects the positive coordinate axes at the
points A and B. The minimum area of the triangle
OAB, where O is the origin, is :
(1) 30 (2) 25
(3) 40 (4) 35
Ans. (1)
Sol.
x y
1
a b
?K?]
3 5
1
a b
?K?] ?? ?@ 5a
b ,a 3
a 3
?]?^
?M
(0, b)
O A
(a, 0)
(3, 5)
B
?H ?I 1 1 5a
A ab a
2 2 a 3
?]?]
?M 5 a
2 a 3
?R ?]??
?M
2
5 a 9 9
2 a 3
???? ?M?K
?]????
?M ????
5 9
a 3
2 a 3
?] ?K ?K????
?M ????
5 9
a 3 6 30
2 a 3
????
?] ?M ?K ?K ?? ????
?M ????
9. Let
?H ?I ?H ?I ?{ ?} 1
cos cos 60 cos 60 , 0,2
8
?? ?M ?? ?M ?? ?? ?? ?? ??
Then, the sum of all ?{ ?} 0, 2 ?? ?? ?? , where cos 3 ??
attains its maximum value, is :
(1) 9 ?? (2) 18 ?@??
(3) 6 ?@?? (4) 15 ?@??
Ans. (3)
Sol. We know that
(cos ?? ) (cos (60° – ?? ) (cos (60° + ?? )
1
cos3
4
?]??
So equation reduces to
1 1
cos3
4 8
????
?? ?@ 1
cos3
2
????
?? ?@ 1 1
cos3
2 2
?M ?? ?? ??
?? maximum value of cos3 ?? =
1
2
, here
?? 3 2n
3
?? ?? ?] ?? ??
2n
3 9
????
?? ?] ??
As ?? ?? [0, 2 ?? ] possible values are
5 7 11 13 17
, , , , ,
9 9 9 9 9 9
?? ?? ?? ?? ?? ?? ????
???]
????
????
Whose sum is
5 7 11 13 17
9 9 9 9 9 9
?? ?? ?? ?? ?? ?? ?K ?K ?K ?K ?K
54
6
9
?? ?] ?] ??
????
10. Let OA 2a,OB 6a 5b ?] ?] ?K and OC 3b ?] ,
where O is the origin. If the area of the
parallelogram with adjacent sides OA and OC is
15 sq. units, then the area (in sq. units) of the
quadrilateral OABC is equal to :
(1) 38 (2) 40
(3) 32 (4) 35
Ans. (4)
Sol.
C
(3b)
O A (2a)
B
(6a
T
5b)
Area of parallelogram having sides
OA & OC OA OC 2a 3b 15 ?] ?? ?] ?? ?]
6 a b 15 ???]
??
5
a b
2
???] ........(1)
Area of quadrilateral
1 2
1
OABC d d
2
?]??
1
AC OB
2
?]??
?H ?I ?H ?I 1
3b 2a 6a 5b
2
?] ?M ?? ?K
1
1 8 b a – 1 0 a b 1 4 a b
2
?] ?? ?? ?] ??
5
14 35
2
?] ?? ?]
11. If the domain of the function
?H ?I 1
x 1
f x sin
2x 3
?M ?M ????
?] ????
?K ????
is R – ( ?? , ?? )
then 12???? is equal to :
(1) 36 (2) 24
(3) 40 (4) 32
Ans. (4)
Sol. Domain of
1
x 1
f (x) sin
2x 3
?M ?M ????
?] ????
?K ????
is
?H ?I x 1
3
2x 3 0 & x and 1
2 2x 3
?M ?M ?K ?? ?? ?? ?K
x 1 2x 3 ?M ?? ?K
y = |2x + 3|
y = |x – 1|
x = 1
x = – 4
For 2x 3 x 1 ?K ?? ?M
?H ?} 2
x – , 4 ,
3
????
?? ?? ?M ?? ?M ??????
????
2
4& :12 32
3
?? ?] ?M ?? ?] ?M ???? ?]
12. If the sum of series
?H ?I ?H ?I ?H ?I ?H ?I ?H ?I 1 1 1
.......
1 1 d 1 d 1 2d 1 9d 1 10d
?K ?K ?K ?? ?K ?K ?K ?K ?K
is equal to 5, then 50d is equal to :
(1) 20 (2) 5
(3) 15 (4) 10
Ans. (2)
Sol.
?H ?I ?H ?I ?H ?I 1 1
.............
1 1 d 1 d 1 2d
?K?K
?? ?K ?K ?K
?H ?I ?H ?I 1
5
1 9d 1 10d
?] ?K?K
Read More