Page 1
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Tuesday 09
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1.
?H ?I 1
2x
x 0
e
1 2x
Lim
x
?? ?M ?K is equal to :
(1) e (2)
2
e
?M (3) 0 (4) e–e
2
Ans. (1)
Sol.
1
ln(1 2x)
2x
x 0
e e
Lim
x
?K ?? ?M =
?H ?I ?H ?I ln 1 2x
1
2x
x 0
e 1
Lim( e)
x
?K ?M ?? ?M ?M =
?H ?I 2
x 0
ln 2x
1 2x
Lim( e)
2x
?? ?M ?K ?M = (–e) × (–1)
4
2 2 ?? = e
2. Consider the line L passing through the points
(1, 2, 3) and (2, 3, 5). The distance of the point
11 11 19
, ,
3 3 3
????
????
????
from the line L along the line
3x 11 3y 11 3z 19
2 1 2
?M ?M ?M ?]?] is equal to :
(1) 3 (2) 5
(3) 4 (4) 6
Ans. (1)
Sol.
x 1 y 2 z 3
2 1 3 2 5 3
?M ?M ?M ?]?]
?M ?M ?M
??
x 1 y 2 z 3
1 1 2
?M ?M ?M ?]?] = ??
B
B(1 + ?? , 2 + ?? , 3 + 2 ?? )
D.R. of AB = <
3 8 3 5 6 10
, ,
3 3 3
?? ?M ?? ?M ?? ?M >
B
5 8 13
, ,
3 3 3
????
????
????
3 8 2
3 5 1
???M
?] ???M
?? 3 ?? – 8 = 6 ?? – 10
3 ?? = 2
?? =
2
3
AB =
36 9 36 9
3
3 3
?K?K
?]?]
3. Let ?H ?I ?H ?I x x
2
0 0
1 dt y(t)dt y'
t
?M?]
????
, 0 ?? x ?? 3, y ?? 0,
y (0) = 0. Then at x = 2, y" + y + 1 is equal to :
(1) 1 (2) 2
(3) 2 (4) 1/2
Ans. (1)
Sol. ?H ?I ?H ?I 2
1 y y'(x)
x
?M?]
1 –
2
2
dy
y
dx
????
?] ????
????
2
2
dy
1 y
dx
????
?]?M
????
????
Page 2
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Tuesday 09
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1.
?H ?I 1
2x
x 0
e
1 2x
Lim
x
?? ?M ?K is equal to :
(1) e (2)
2
e
?M (3) 0 (4) e–e
2
Ans. (1)
Sol.
1
ln(1 2x)
2x
x 0
e e
Lim
x
?K ?? ?M =
?H ?I ?H ?I ln 1 2x
1
2x
x 0
e 1
Lim( e)
x
?K ?M ?? ?M ?M =
?H ?I 2
x 0
ln 2x
1 2x
Lim( e)
2x
?? ?M ?K ?M = (–e) × (–1)
4
2 2 ?? = e
2. Consider the line L passing through the points
(1, 2, 3) and (2, 3, 5). The distance of the point
11 11 19
, ,
3 3 3
????
????
????
from the line L along the line
3x 11 3y 11 3z 19
2 1 2
?M ?M ?M ?]?] is equal to :
(1) 3 (2) 5
(3) 4 (4) 6
Ans. (1)
Sol.
x 1 y 2 z 3
2 1 3 2 5 3
?M ?M ?M ?]?]
?M ?M ?M
??
x 1 y 2 z 3
1 1 2
?M ?M ?M ?]?] = ??
B
B(1 + ?? , 2 + ?? , 3 + 2 ?? )
D.R. of AB = <
3 8 3 5 6 10
, ,
3 3 3
?? ?M ?? ?M ?? ?M >
B
5 8 13
, ,
3 3 3
????
????
????
3 8 2
3 5 1
???M
?] ???M
?? 3 ?? – 8 = 6 ?? – 10
3 ?? = 2
?? =
2
3
AB =
36 9 36 9
3
3 3
?K?K
?]?]
3. Let ?H ?I ?H ?I x x
2
0 0
1 dt y(t)dt y'
t
?M?]
????
, 0 ?? x ?? 3, y ?? 0,
y (0) = 0. Then at x = 2, y" + y + 1 is equal to :
(1) 1 (2) 2
(3) 2 (4) 1/2
Ans. (1)
Sol. ?H ?I ?H ?I 2
1 y y'(x)
x
?M?]
1 –
2
2
dy
y
dx
????
?] ????
????
2
2
dy
1 y
dx
????
?]?M
????
????
2
dy
dx
1 y
?] ?M OR
2
dy
dx
1 y
?]?M
?M
???@ ?@ sin
–1
y = x + c, sin
–1
y = –x + c
x = 0, y = 0 ?? c = 0
sin
–1
y = x, as y ?? 0
sinx = y
??
dy
cos x
dx
?]
2
2
d y
sin x
dx
?]?M
?? – sinx + sinx + 1 = 1
4. Let z be a complex number such that the real part
of
z 2i
z 2i
?M ?K is zero. Then, the maximum value of
|z –(6+8i)| is equal to :
(1) 12 (2) ??
(3) 10 (4) 8
Ans. (1)
Sol.
z 2i z 2i
0
z 2i z 2i
?M?K
?K?]
?K?M
zz 2iz 2iz 4( 1) ?M ?M ?K ?M
zz 2zi 2zi 4( 1) 0 ?K ?K ?K ?K ?M ?]
???@ 2|z|
2
= 8 ?? |z| = 2
?H ?I maximum
10 2 12 z
6 8i
?] ?K ?] ?M ?K
5. The area (in square units) of the region enclosed by
the ellipse x
2
+ 3y
2
= 18 in the first quadrant below
the line y = x is :
(1)
3
3
4
???K (2) 3 ??
(3)
3
3
4
???M (4) 3 1 ???K
Ans. (2)
Sol.
2 2
x y
1
18 6
?K?]
y = x
2 2
x 3x
1
18 18
?K?] ?? 4x
2
= 18 ?? x
2
=
9
2
3 2 2
3
2
18 x
dx
3
?M ??
=
3 2
2
1
3
2
1
x 18 x 18 x
sin
3 2 2 3 2
?M ????
?M ?K????
????
=
1
3 3 3
9 9
3 2 6 2 2 2
????
????
?? ?M ?? ?M ?? ????
????
Required Area
1 9 1
18 9 3
2 2 3 6 4
????
?? ?] ?? ?K ?M ????
????
3 ?]??
6. Let the foci of a hyperbola H coincide with the foci
of the ellipse E :
?H ?I ?H ?I 2
2
y 1
x 1
1
100 75
?M ?M ?K?] and the
eccentricity of the hyperbola H be the reciprocal of
the eccentricity of the ellipse E. If the length of the
transverse axis of H is ?? and the length of its
conjugate axis is ?? , then 3 ?? 2
+ 2 ?? 2
is equal to :
(1) 242
(2) 225
(3) 237
(4) 205
Ans. (2)
Page 3
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Tuesday 09
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1.
?H ?I 1
2x
x 0
e
1 2x
Lim
x
?? ?M ?K is equal to :
(1) e (2)
2
e
?M (3) 0 (4) e–e
2
Ans. (1)
Sol.
1
ln(1 2x)
2x
x 0
e e
Lim
x
?K ?? ?M =
?H ?I ?H ?I ln 1 2x
1
2x
x 0
e 1
Lim( e)
x
?K ?M ?? ?M ?M =
?H ?I 2
x 0
ln 2x
1 2x
Lim( e)
2x
?? ?M ?K ?M = (–e) × (–1)
4
2 2 ?? = e
2. Consider the line L passing through the points
(1, 2, 3) and (2, 3, 5). The distance of the point
11 11 19
, ,
3 3 3
????
????
????
from the line L along the line
3x 11 3y 11 3z 19
2 1 2
?M ?M ?M ?]?] is equal to :
(1) 3 (2) 5
(3) 4 (4) 6
Ans. (1)
Sol.
x 1 y 2 z 3
2 1 3 2 5 3
?M ?M ?M ?]?]
?M ?M ?M
??
x 1 y 2 z 3
1 1 2
?M ?M ?M ?]?] = ??
B
B(1 + ?? , 2 + ?? , 3 + 2 ?? )
D.R. of AB = <
3 8 3 5 6 10
, ,
3 3 3
?? ?M ?? ?M ?? ?M >
B
5 8 13
, ,
3 3 3
????
????
????
3 8 2
3 5 1
???M
?] ???M
?? 3 ?? – 8 = 6 ?? – 10
3 ?? = 2
?? =
2
3
AB =
36 9 36 9
3
3 3
?K?K
?]?]
3. Let ?H ?I ?H ?I x x
2
0 0
1 dt y(t)dt y'
t
?M?]
????
, 0 ?? x ?? 3, y ?? 0,
y (0) = 0. Then at x = 2, y" + y + 1 is equal to :
(1) 1 (2) 2
(3) 2 (4) 1/2
Ans. (1)
Sol. ?H ?I ?H ?I 2
1 y y'(x)
x
?M?]
1 –
2
2
dy
y
dx
????
?] ????
????
2
2
dy
1 y
dx
????
?]?M
????
????
2
dy
dx
1 y
?] ?M OR
2
dy
dx
1 y
?]?M
?M
???@ ?@ sin
–1
y = x + c, sin
–1
y = –x + c
x = 0, y = 0 ?? c = 0
sin
–1
y = x, as y ?? 0
sinx = y
??
dy
cos x
dx
?]
2
2
d y
sin x
dx
?]?M
?? – sinx + sinx + 1 = 1
4. Let z be a complex number such that the real part
of
z 2i
z 2i
?M ?K is zero. Then, the maximum value of
|z –(6+8i)| is equal to :
(1) 12 (2) ??
(3) 10 (4) 8
Ans. (1)
Sol.
z 2i z 2i
0
z 2i z 2i
?M?K
?K?]
?K?M
zz 2iz 2iz 4( 1) ?M ?M ?K ?M
zz 2zi 2zi 4( 1) 0 ?K ?K ?K ?K ?M ?]
???@ 2|z|
2
= 8 ?? |z| = 2
?H ?I maximum
10 2 12 z
6 8i
?] ?K ?] ?M ?K
5. The area (in square units) of the region enclosed by
the ellipse x
2
+ 3y
2
= 18 in the first quadrant below
the line y = x is :
(1)
3
3
4
???K (2) 3 ??
(3)
3
3
4
???M (4) 3 1 ???K
Ans. (2)
Sol.
2 2
x y
1
18 6
?K?]
y = x
2 2
x 3x
1
18 18
?K?] ?? 4x
2
= 18 ?? x
2
=
9
2
3 2 2
3
2
18 x
dx
3
?M ??
=
3 2
2
1
3
2
1
x 18 x 18 x
sin
3 2 2 3 2
?M ????
?M ?K????
????
=
1
3 3 3
9 9
3 2 6 2 2 2
????
????
?? ?M ?? ?M ?? ????
????
Required Area
1 9 1
18 9 3
2 2 3 6 4
????
?? ?] ?? ?K ?M ????
????
3 ?]??
6. Let the foci of a hyperbola H coincide with the foci
of the ellipse E :
?H ?I ?H ?I 2
2
y 1
x 1
1
100 75
?M ?M ?K?] and the
eccentricity of the hyperbola H be the reciprocal of
the eccentricity of the ellipse E. If the length of the
transverse axis of H is ?? and the length of its
conjugate axis is ?? , then 3 ?? 2
+ 2 ?? 2
is equal to :
(1) 242
(2) 225
(3) 237
(4) 205
Ans. (2)
Sol.
F
12
(1, 1)
F
1
e
1
=
75 5 1
1
100 10 2
?M ?] ?]
e
2
= 2
F
1
(6, 1), F
2
(–4, 1)
2ae
2
= 10 ?? a =
5
2a 5
2
???]
???@?? = 5
4 = 1 +
2
2 2
2
b
b 3a
a
???]
b =
5
3
2
??
?? ?@ = 5 3
3 ?? 2
+ 2 ?? 2
= 3 × 25 + 2 × 25 × 3
= 225
7. Two vertices of a triangle ABC are A(3, –1) and
B (–2, 3), and its orthocentre is P(1, 1). If the
coordinates of the point C are ( ?? , ?? ) and the centre
of the circle circumscribing the triangle PAB is
(h, k), then the value of ( ?? + ?? ) + 2 (h + k) equals :
(1) 51 (2) 81
(3) 5 (4) 15
Ans. (3)
Sol.
C ( ?? , ?? )
A(3,–1)
B (–2, 3)
D
M
AB
=
4
5 ?M ?? M
DP
=
5
4
Equation of PC is y – 1 = ?H ?I 5
x 1
4
?M .......(1)
M
AP
=
2
1
2
?]?M
?M ?? M
BC
= + 1
Equation of BC is y – 3 = (x + 2) .........(2)
On solving (1) and (2)
x + 4 = ?H ?I 5
x 1
4
?M ?? 4x + 16 = 5x – 5 ?? ?? = 21
?@ ?? ?? = y = x + 5 = 26
?? + ?? = 47
Equation of ?~ bisector of AP
y – 0 = (x – 2) ............ (3)
Equation of ?~ bisector of AB
y – 1 =
5 1
x
4 2
????
?M ????
????
............(4)
On solving (3) & (4)
(x – 3)4 = 5x –
5
2
x =
19
h
2
?M ?]
y =
23
k
2
?M ?]
???@ 2(h + k) = –42
8. If the variance of the frequency distribution is 160,
then the value of c ?? N is
x c 2c 3c 4c 5c 6c
f 2 1 1 1 1 1
(1) 5 (2) 8
(3) 7 (4) 6
Ans. (3)
Sol.
x C 2C 3C 4C 5C 6C
f 2 1 1 1 1 1
(2 2 3 4 5 6)C 22C
x
7 7
?K ?K ?K ?K ?K ?]?]
Page 4
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Tuesday 09
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1.
?H ?I 1
2x
x 0
e
1 2x
Lim
x
?? ?M ?K is equal to :
(1) e (2)
2
e
?M (3) 0 (4) e–e
2
Ans. (1)
Sol.
1
ln(1 2x)
2x
x 0
e e
Lim
x
?K ?? ?M =
?H ?I ?H ?I ln 1 2x
1
2x
x 0
e 1
Lim( e)
x
?K ?M ?? ?M ?M =
?H ?I 2
x 0
ln 2x
1 2x
Lim( e)
2x
?? ?M ?K ?M = (–e) × (–1)
4
2 2 ?? = e
2. Consider the line L passing through the points
(1, 2, 3) and (2, 3, 5). The distance of the point
11 11 19
, ,
3 3 3
????
????
????
from the line L along the line
3x 11 3y 11 3z 19
2 1 2
?M ?M ?M ?]?] is equal to :
(1) 3 (2) 5
(3) 4 (4) 6
Ans. (1)
Sol.
x 1 y 2 z 3
2 1 3 2 5 3
?M ?M ?M ?]?]
?M ?M ?M
??
x 1 y 2 z 3
1 1 2
?M ?M ?M ?]?] = ??
B
B(1 + ?? , 2 + ?? , 3 + 2 ?? )
D.R. of AB = <
3 8 3 5 6 10
, ,
3 3 3
?? ?M ?? ?M ?? ?M >
B
5 8 13
, ,
3 3 3
????
????
????
3 8 2
3 5 1
???M
?] ???M
?? 3 ?? – 8 = 6 ?? – 10
3 ?? = 2
?? =
2
3
AB =
36 9 36 9
3
3 3
?K?K
?]?]
3. Let ?H ?I ?H ?I x x
2
0 0
1 dt y(t)dt y'
t
?M?]
????
, 0 ?? x ?? 3, y ?? 0,
y (0) = 0. Then at x = 2, y" + y + 1 is equal to :
(1) 1 (2) 2
(3) 2 (4) 1/2
Ans. (1)
Sol. ?H ?I ?H ?I 2
1 y y'(x)
x
?M?]
1 –
2
2
dy
y
dx
????
?] ????
????
2
2
dy
1 y
dx
????
?]?M
????
????
2
dy
dx
1 y
?] ?M OR
2
dy
dx
1 y
?]?M
?M
???@ ?@ sin
–1
y = x + c, sin
–1
y = –x + c
x = 0, y = 0 ?? c = 0
sin
–1
y = x, as y ?? 0
sinx = y
??
dy
cos x
dx
?]
2
2
d y
sin x
dx
?]?M
?? – sinx + sinx + 1 = 1
4. Let z be a complex number such that the real part
of
z 2i
z 2i
?M ?K is zero. Then, the maximum value of
|z –(6+8i)| is equal to :
(1) 12 (2) ??
(3) 10 (4) 8
Ans. (1)
Sol.
z 2i z 2i
0
z 2i z 2i
?M?K
?K?]
?K?M
zz 2iz 2iz 4( 1) ?M ?M ?K ?M
zz 2zi 2zi 4( 1) 0 ?K ?K ?K ?K ?M ?]
???@ 2|z|
2
= 8 ?? |z| = 2
?H ?I maximum
10 2 12 z
6 8i
?] ?K ?] ?M ?K
5. The area (in square units) of the region enclosed by
the ellipse x
2
+ 3y
2
= 18 in the first quadrant below
the line y = x is :
(1)
3
3
4
???K (2) 3 ??
(3)
3
3
4
???M (4) 3 1 ???K
Ans. (2)
Sol.
2 2
x y
1
18 6
?K?]
y = x
2 2
x 3x
1
18 18
?K?] ?? 4x
2
= 18 ?? x
2
=
9
2
3 2 2
3
2
18 x
dx
3
?M ??
=
3 2
2
1
3
2
1
x 18 x 18 x
sin
3 2 2 3 2
?M ????
?M ?K????
????
=
1
3 3 3
9 9
3 2 6 2 2 2
????
????
?? ?M ?? ?M ?? ????
????
Required Area
1 9 1
18 9 3
2 2 3 6 4
????
?? ?] ?? ?K ?M ????
????
3 ?]??
6. Let the foci of a hyperbola H coincide with the foci
of the ellipse E :
?H ?I ?H ?I 2
2
y 1
x 1
1
100 75
?M ?M ?K?] and the
eccentricity of the hyperbola H be the reciprocal of
the eccentricity of the ellipse E. If the length of the
transverse axis of H is ?? and the length of its
conjugate axis is ?? , then 3 ?? 2
+ 2 ?? 2
is equal to :
(1) 242
(2) 225
(3) 237
(4) 205
Ans. (2)
Sol.
F
12
(1, 1)
F
1
e
1
=
75 5 1
1
100 10 2
?M ?] ?]
e
2
= 2
F
1
(6, 1), F
2
(–4, 1)
2ae
2
= 10 ?? a =
5
2a 5
2
???]
???@?? = 5
4 = 1 +
2
2 2
2
b
b 3a
a
???]
b =
5
3
2
??
?? ?@ = 5 3
3 ?? 2
+ 2 ?? 2
= 3 × 25 + 2 × 25 × 3
= 225
7. Two vertices of a triangle ABC are A(3, –1) and
B (–2, 3), and its orthocentre is P(1, 1). If the
coordinates of the point C are ( ?? , ?? ) and the centre
of the circle circumscribing the triangle PAB is
(h, k), then the value of ( ?? + ?? ) + 2 (h + k) equals :
(1) 51 (2) 81
(3) 5 (4) 15
Ans. (3)
Sol.
C ( ?? , ?? )
A(3,–1)
B (–2, 3)
D
M
AB
=
4
5 ?M ?? M
DP
=
5
4
Equation of PC is y – 1 = ?H ?I 5
x 1
4
?M .......(1)
M
AP
=
2
1
2
?]?M
?M ?? M
BC
= + 1
Equation of BC is y – 3 = (x + 2) .........(2)
On solving (1) and (2)
x + 4 = ?H ?I 5
x 1
4
?M ?? 4x + 16 = 5x – 5 ?? ?? = 21
?@ ?? ?? = y = x + 5 = 26
?? + ?? = 47
Equation of ?~ bisector of AP
y – 0 = (x – 2) ............ (3)
Equation of ?~ bisector of AB
y – 1 =
5 1
x
4 2
????
?M ????
????
............(4)
On solving (3) & (4)
(x – 3)4 = 5x –
5
2
x =
19
h
2
?M ?]
y =
23
k
2
?M ?]
???@ 2(h + k) = –42
8. If the variance of the frequency distribution is 160,
then the value of c ?? N is
x c 2c 3c 4c 5c 6c
f 2 1 1 1 1 1
(1) 5 (2) 8
(3) 7 (4) 6
Ans. (3)
Sol.
x C 2C 3C 4C 5C 6C
f 2 1 1 1 1 1
(2 2 3 4 5 6)C 22C
x
7 7
?K ?K ?K ?K ?K ?]?]
Var (x) =
?H ?I 2
2 2 2 2 2
c
2 2 3 4 5 6
7
?K ?K ?K ?K ?K
–
2
22c
7
????
????
????
=
2
2
92c 484
c
7 49
?M??
=
?H ?I 2 2
c 60c
644 484
49 49
?Q ?M ?]
2
160 c
160 c 7
49
?? ?] ?? ?]
9. Let the range of the function
f (x) =
1
2 sin3x cos3x ?K?K
, x ?? IR be [a, b].
If ?? and ?? are respectively the A.M. and the G.M.
of a and b, then
?? ?? is equal to :
(1) 2 (2) 2
(3) ?? (4) ??
Ans. (1)
Sol. f(x)
1
2 sin3x cos3x ?K?K
1 1
,
2 2 2 2
????
????
?K?M ????
a b 1
a b
2 2 ab b a
???? ???K
?]?]
?K ????
?? ????
=
1
2 2 2 2
2
2 2 2 2
????
?M?K
???? ?K ????
?K?M
????
=
?H ?I ?H ?I 2 2 2 2
2 2
?K ?M?K
?? = 2
10. Between the following two statements :
Statement-I : Let
ˆ ˆ ˆ
a i 2j 3k ?] ?K ?M and
ˆ ˆ ˆ
b 2i j k ?] ?K ?M . Then the vector r satisfying
a r a b ?? ?] ?? and a.r 0 ?] is of magnitude 10 .
Statement-II : In a triangle ABC, cos2A + cos2B
+ cos2C ?? –
3
2
.
(1) Both Statement-I and Statement-II are incorrect
(2) Statement-I is incorrect but Statement-II is
correct
(3) Both Statement-I and Statement-II are correct
(4) Statement-I is correct but Statement-II is
incorrect
Ans. (2)
Sol.
ˆ ˆ ˆ
a i 2j 3k ?] ?K ?M
ˆ ˆ ˆ
a 2i j k ?] ?K ?M
a r a b ?? ?] ?? ; a.r 0 ?]
?? ?H ?I a
r b
?? ?M 0 ?]
?? ?H ?I a
r b
?]??
?M
?H ?I a.a
a.r a.b
?]??
?M
14 = – 7 ?? ?? ?? = – 2
a
r b
2
?M ?]?M ??
a
r b
2
?]?M
=
ˆˆ
2b a 3i k
2 2
?M?K
?]
Statement (I) is incorrect
cos2A + cos 2B + cos 2c ?? –
3
2
2A + 2B + 2C = 2 ??
cos2A + cos2B + cos 2C
= – 1 – 4 cosA·cosB·cosC
?? –1 – 4 ×
1 1 1
2 2 2
????
= –
3
2
Statement (II) is correct.
Page 5
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Tuesday 09
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1.
?H ?I 1
2x
x 0
e
1 2x
Lim
x
?? ?M ?K is equal to :
(1) e (2)
2
e
?M (3) 0 (4) e–e
2
Ans. (1)
Sol.
1
ln(1 2x)
2x
x 0
e e
Lim
x
?K ?? ?M =
?H ?I ?H ?I ln 1 2x
1
2x
x 0
e 1
Lim( e)
x
?K ?M ?? ?M ?M =
?H ?I 2
x 0
ln 2x
1 2x
Lim( e)
2x
?? ?M ?K ?M = (–e) × (–1)
4
2 2 ?? = e
2. Consider the line L passing through the points
(1, 2, 3) and (2, 3, 5). The distance of the point
11 11 19
, ,
3 3 3
????
????
????
from the line L along the line
3x 11 3y 11 3z 19
2 1 2
?M ?M ?M ?]?] is equal to :
(1) 3 (2) 5
(3) 4 (4) 6
Ans. (1)
Sol.
x 1 y 2 z 3
2 1 3 2 5 3
?M ?M ?M ?]?]
?M ?M ?M
??
x 1 y 2 z 3
1 1 2
?M ?M ?M ?]?] = ??
B
B(1 + ?? , 2 + ?? , 3 + 2 ?? )
D.R. of AB = <
3 8 3 5 6 10
, ,
3 3 3
?? ?M ?? ?M ?? ?M >
B
5 8 13
, ,
3 3 3
????
????
????
3 8 2
3 5 1
???M
?] ???M
?? 3 ?? – 8 = 6 ?? – 10
3 ?? = 2
?? =
2
3
AB =
36 9 36 9
3
3 3
?K?K
?]?]
3. Let ?H ?I ?H ?I x x
2
0 0
1 dt y(t)dt y'
t
?M?]
????
, 0 ?? x ?? 3, y ?? 0,
y (0) = 0. Then at x = 2, y" + y + 1 is equal to :
(1) 1 (2) 2
(3) 2 (4) 1/2
Ans. (1)
Sol. ?H ?I ?H ?I 2
1 y y'(x)
x
?M?]
1 –
2
2
dy
y
dx
????
?] ????
????
2
2
dy
1 y
dx
????
?]?M
????
????
2
dy
dx
1 y
?] ?M OR
2
dy
dx
1 y
?]?M
?M
???@ ?@ sin
–1
y = x + c, sin
–1
y = –x + c
x = 0, y = 0 ?? c = 0
sin
–1
y = x, as y ?? 0
sinx = y
??
dy
cos x
dx
?]
2
2
d y
sin x
dx
?]?M
?? – sinx + sinx + 1 = 1
4. Let z be a complex number such that the real part
of
z 2i
z 2i
?M ?K is zero. Then, the maximum value of
|z –(6+8i)| is equal to :
(1) 12 (2) ??
(3) 10 (4) 8
Ans. (1)
Sol.
z 2i z 2i
0
z 2i z 2i
?M?K
?K?]
?K?M
zz 2iz 2iz 4( 1) ?M ?M ?K ?M
zz 2zi 2zi 4( 1) 0 ?K ?K ?K ?K ?M ?]
???@ 2|z|
2
= 8 ?? |z| = 2
?H ?I maximum
10 2 12 z
6 8i
?] ?K ?] ?M ?K
5. The area (in square units) of the region enclosed by
the ellipse x
2
+ 3y
2
= 18 in the first quadrant below
the line y = x is :
(1)
3
3
4
???K (2) 3 ??
(3)
3
3
4
???M (4) 3 1 ???K
Ans. (2)
Sol.
2 2
x y
1
18 6
?K?]
y = x
2 2
x 3x
1
18 18
?K?] ?? 4x
2
= 18 ?? x
2
=
9
2
3 2 2
3
2
18 x
dx
3
?M ??
=
3 2
2
1
3
2
1
x 18 x 18 x
sin
3 2 2 3 2
?M ????
?M ?K????
????
=
1
3 3 3
9 9
3 2 6 2 2 2
????
????
?? ?M ?? ?M ?? ????
????
Required Area
1 9 1
18 9 3
2 2 3 6 4
????
?? ?] ?? ?K ?M ????
????
3 ?]??
6. Let the foci of a hyperbola H coincide with the foci
of the ellipse E :
?H ?I ?H ?I 2
2
y 1
x 1
1
100 75
?M ?M ?K?] and the
eccentricity of the hyperbola H be the reciprocal of
the eccentricity of the ellipse E. If the length of the
transverse axis of H is ?? and the length of its
conjugate axis is ?? , then 3 ?? 2
+ 2 ?? 2
is equal to :
(1) 242
(2) 225
(3) 237
(4) 205
Ans. (2)
Sol.
F
12
(1, 1)
F
1
e
1
=
75 5 1
1
100 10 2
?M ?] ?]
e
2
= 2
F
1
(6, 1), F
2
(–4, 1)
2ae
2
= 10 ?? a =
5
2a 5
2
???]
???@?? = 5
4 = 1 +
2
2 2
2
b
b 3a
a
???]
b =
5
3
2
??
?? ?@ = 5 3
3 ?? 2
+ 2 ?? 2
= 3 × 25 + 2 × 25 × 3
= 225
7. Two vertices of a triangle ABC are A(3, –1) and
B (–2, 3), and its orthocentre is P(1, 1). If the
coordinates of the point C are ( ?? , ?? ) and the centre
of the circle circumscribing the triangle PAB is
(h, k), then the value of ( ?? + ?? ) + 2 (h + k) equals :
(1) 51 (2) 81
(3) 5 (4) 15
Ans. (3)
Sol.
C ( ?? , ?? )
A(3,–1)
B (–2, 3)
D
M
AB
=
4
5 ?M ?? M
DP
=
5
4
Equation of PC is y – 1 = ?H ?I 5
x 1
4
?M .......(1)
M
AP
=
2
1
2
?]?M
?M ?? M
BC
= + 1
Equation of BC is y – 3 = (x + 2) .........(2)
On solving (1) and (2)
x + 4 = ?H ?I 5
x 1
4
?M ?? 4x + 16 = 5x – 5 ?? ?? = 21
?@ ?? ?? = y = x + 5 = 26
?? + ?? = 47
Equation of ?~ bisector of AP
y – 0 = (x – 2) ............ (3)
Equation of ?~ bisector of AB
y – 1 =
5 1
x
4 2
????
?M ????
????
............(4)
On solving (3) & (4)
(x – 3)4 = 5x –
5
2
x =
19
h
2
?M ?]
y =
23
k
2
?M ?]
???@ 2(h + k) = –42
8. If the variance of the frequency distribution is 160,
then the value of c ?? N is
x c 2c 3c 4c 5c 6c
f 2 1 1 1 1 1
(1) 5 (2) 8
(3) 7 (4) 6
Ans. (3)
Sol.
x C 2C 3C 4C 5C 6C
f 2 1 1 1 1 1
(2 2 3 4 5 6)C 22C
x
7 7
?K ?K ?K ?K ?K ?]?]
Var (x) =
?H ?I 2
2 2 2 2 2
c
2 2 3 4 5 6
7
?K ?K ?K ?K ?K
–
2
22c
7
????
????
????
=
2
2
92c 484
c
7 49
?M??
=
?H ?I 2 2
c 60c
644 484
49 49
?Q ?M ?]
2
160 c
160 c 7
49
?? ?] ?? ?]
9. Let the range of the function
f (x) =
1
2 sin3x cos3x ?K?K
, x ?? IR be [a, b].
If ?? and ?? are respectively the A.M. and the G.M.
of a and b, then
?? ?? is equal to :
(1) 2 (2) 2
(3) ?? (4) ??
Ans. (1)
Sol. f(x)
1
2 sin3x cos3x ?K?K
1 1
,
2 2 2 2
????
????
?K?M ????
a b 1
a b
2 2 ab b a
???? ???K
?]?]
?K ????
?? ????
=
1
2 2 2 2
2
2 2 2 2
????
?M?K
???? ?K ????
?K?M
????
=
?H ?I ?H ?I 2 2 2 2
2 2
?K ?M?K
?? = 2
10. Between the following two statements :
Statement-I : Let
ˆ ˆ ˆ
a i 2j 3k ?] ?K ?M and
ˆ ˆ ˆ
b 2i j k ?] ?K ?M . Then the vector r satisfying
a r a b ?? ?] ?? and a.r 0 ?] is of magnitude 10 .
Statement-II : In a triangle ABC, cos2A + cos2B
+ cos2C ?? –
3
2
.
(1) Both Statement-I and Statement-II are incorrect
(2) Statement-I is incorrect but Statement-II is
correct
(3) Both Statement-I and Statement-II are correct
(4) Statement-I is correct but Statement-II is
incorrect
Ans. (2)
Sol.
ˆ ˆ ˆ
a i 2j 3k ?] ?K ?M
ˆ ˆ ˆ
a 2i j k ?] ?K ?M
a r a b ?? ?] ?? ; a.r 0 ?]
?? ?H ?I a
r b
?? ?M 0 ?]
?? ?H ?I a
r b
?]??
?M
?H ?I a.a
a.r a.b
?]??
?M
14 = – 7 ?? ?? ?? = – 2
a
r b
2
?M ?]?M ??
a
r b
2
?]?M
=
ˆˆ
2b a 3i k
2 2
?M?K
?]
Statement (I) is incorrect
cos2A + cos 2B + cos 2c ?? –
3
2
2A + 2B + 2C = 2 ??
cos2A + cos2B + cos 2C
= – 1 – 4 cosA·cosB·cosC
?? –1 – 4 ×
1 1 1
2 2 2
????
= –
3
2
Statement (II) is correct.
11.
?H ?I ?H ?I ?H ?I ?H ?I 3
3
/2
1/3 1/3
x
2
x
x
2
sin cos dt
2t t
lim
x
2
?? ??????
?K ????
????
?? ????
????
?M ???? ????
???? ????
?? is equal
to :
(1)
2
9
8
?? (2)
2
11
10
??
(3)
2
3
2
?? (4)
2
5
9
??
Ans. (1)
Sol.
?? ?? 2
x
2
0 .3x sin(2x) cos(x)
lim
2 x
2
?? ?? ?M ?K ?? ????
?M ????
????
=
?? ?? 2
x
2
3x
2sin x cos x cos x
lim
2 x
2
?? ?? ?M ?K ?? ????
?M ????
????
=
2
x
2
2sin x sin sin x x
2 2
lim 3x
2 2 x x
2 2
?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?M?M
?? ?? ?? ?? ????
????
?? ?? ?? ?? ?K ????
???? ?? ?? ?? ?? ????
?M?M
?? ?? ?? ?? ???? ?? ?? ?? ?? ????
= ?H ?I 2
1
3 1
1
2 2
?? ?? ?? ?? ?? ?K ?? ?? ?? ?? ?? ?? ?? ??
=
2
9
8
??
12. The sum of the coefficient of x
2/3
and x
–2/5
in the
binomial expansion of
9
2/3 2/5
1
x x
2
?M ????
?K????
????
is :
(1) 21/4 (2) 69/16
(3) 63/16 (4) 19/4
Ans. (1)
Sol. T
r + 1
= ?H ?I r
2/5
9 r 9
2/3
r
x
C
x
2
?M ?M????
????
????
= ?H ?I 2r 2r
6
3 5
r
9
r
1
C
r
2
????
?M?M ????
????
????
????
????
for coefficient of x
2/3
, put
2r 2r 2
6
3 5 3
?M ?M ?]
???@ r = 5
?| Coefficient of x
2/3
is =
5
9
5
1
C
5
????
????
????
For coefficient of x
–2/5
, put
2r 2r 2
6
3 5 5
?M ?M ?] ?M
?? r = 6
Coefficient of x
–2/5
is
9
C
6
6
1
2
????
????
????
Sum =
9
C
5
5
1
2
????
????
????
+
9
C
6
6
1
2
????
????
????
=
21
4
13. Let B =
1 3
1 5
????
????
????
and A be a 2 × 2 matrix such that
AB
–1
= A
–1
. If BCB
–1
= A and C
4
+ ?? C
2
+ ?? I = O,
then 2 ?? – ?? is equal to :
(1) 16 (2) 2
(3) 8 (4) 10
Ans. (4)
Sol. BCB
–1
= A
?? (BCB
–1
) (BCB
–1
) = A.A
?? BCI CB
–1
= A
2
?? BC
2
B
–1
= A
2
?? B
–1
(BC
2
B
–1
)B = B
–1
(A.A)B
From equation (1)
C
2
= A
–1
.A.B
C
2
= B
Also AB
–1
= A
–1
?? AB
–1
.A = A
–1
A = I
?? A
–1
(AB
–1
A) =A
–1
I
B
–1
A = A
–1
Now characteristics equation of C
2
is
|C
2
– ?? I| = 0
|B – ?? I| = 0
Read More