Page 1
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Monday 08
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. If the image of the point (-4, 5) in the line
x + 2y = 2 lies on the circle (x + 4)
2
+ (y-3)
2
= r
2
,
then r is equal lo :
(1) 1 (2) 2
(3) 75 (4) 3
Ans. (2)
Sol. Image of point (–4, 5)
1 1 1 1
2 2
x x y y ax by c
2
a b a b
?M ?M ?K ?K ????
?] ?] ?M????
?K ????
Line : x + 2y – 2 = 0
2 2
x 4 y 5 4 10 2
2
1 2 1 2
?K ?M ?M ?K ?M????
?] ?] ?M????
?K ????
8
5
?M ?] 8 28
x 4
5 5
?] ?M ?M ?] ?M 16 9
y 5
5 5
?] ?M ?K ?] Point lies on circle (x + 4)
2
+ (y – 3)
2
= r
2
2
2
64 9
3 r
25 5
????
?K ?M ?] ????
????
2
100
r , r 2
25
?]?]
2. Let
ˆˆ ˆ
a i 2j 3k ?] ?K ?K ,
ˆˆ ˆ
b 2i 3j 5k ?] ?K ?M and
ˆˆ ˆ
c 3i j k ?] ?M ?K ?? be three vectors. Let r be a unit
vector along b c ?K . If r . a 3 ?] , then 3 ?? is equal
to :
(1) 27 (2) 25
(3) 25 (4) 21
Ans. (2)
Sol. ?H ?I r k b c ?]?K
r . a 3 ?]
?H ?I r.a k b.a c.a ?]?K
3 = k(2 + 6 – 15 + 3 – 2 + 3 ?? )
3 = k(–6 + 3 ?? ) …(1)
ˆˆ ˆ
r k(5i 2j (5 )k) ?] ?K ?M ?M ?? 2
r k 25 4 25 10 1 ?] ?K ?K ?K ?? ?M ?? ?] …(2)
3 1
k
6 3 2
?]?]
?M ?K ?? ?M ?K ?? put in (2)
4 + ?? 2
– 4 ?? = 54 + ?? 2
– 10 ??
6 ?? = 50
3 ?? = 25
3. If ???@ ?? ?@ a, ?? ?@ ?? ?@ b, ?? ?@ ?? ?@ c and
b c
a c 0
a b
?? ???]
?? , then
a b
a b c
?? ?K?K
?? ?M ?? ?M ?? ?M is equal to :
(1) 2 (2) 3
(3) 0 (4) 1
Ans. (3)
Sol. R
1
?? R
1
– R
2
, R
2
?? ?@ R
2
– R
3
a b 0
0 b c 0
a b
?? ?M ?M ?? ?? ?M ?M ?? ?] ?? ( ?? –a) ( ?? ( ?? –b) – b(c– ?? )) – (b – ?? ) (– a(c - ?? )) = 0
?? ( ?? – a) ( ?? – b) – b( ?? – a) (c – ?? ) + a(b - ?? ) (c – ?? )
b a
0
c b a
?? ?K ?K ?] ?? ?M ?? ?M ?? ?M
Page 2
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Monday 08
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. If the image of the point (-4, 5) in the line
x + 2y = 2 lies on the circle (x + 4)
2
+ (y-3)
2
= r
2
,
then r is equal lo :
(1) 1 (2) 2
(3) 75 (4) 3
Ans. (2)
Sol. Image of point (–4, 5)
1 1 1 1
2 2
x x y y ax by c
2
a b a b
?M ?M ?K ?K ????
?] ?] ?M????
?K ????
Line : x + 2y – 2 = 0
2 2
x 4 y 5 4 10 2
2
1 2 1 2
?K ?M ?M ?K ?M????
?] ?] ?M????
?K ????
8
5
?M ?] 8 28
x 4
5 5
?] ?M ?M ?] ?M 16 9
y 5
5 5
?] ?M ?K ?] Point lies on circle (x + 4)
2
+ (y – 3)
2
= r
2
2
2
64 9
3 r
25 5
????
?K ?M ?] ????
????
2
100
r , r 2
25
?]?]
2. Let
ˆˆ ˆ
a i 2j 3k ?] ?K ?K ,
ˆˆ ˆ
b 2i 3j 5k ?] ?K ?M and
ˆˆ ˆ
c 3i j k ?] ?M ?K ?? be three vectors. Let r be a unit
vector along b c ?K . If r . a 3 ?] , then 3 ?? is equal
to :
(1) 27 (2) 25
(3) 25 (4) 21
Ans. (2)
Sol. ?H ?I r k b c ?]?K
r . a 3 ?]
?H ?I r.a k b.a c.a ?]?K
3 = k(2 + 6 – 15 + 3 – 2 + 3 ?? )
3 = k(–6 + 3 ?? ) …(1)
ˆˆ ˆ
r k(5i 2j (5 )k) ?] ?K ?M ?M ?? 2
r k 25 4 25 10 1 ?] ?K ?K ?K ?? ?M ?? ?] …(2)
3 1
k
6 3 2
?]?]
?M ?K ?? ?M ?K ?? put in (2)
4 + ?? 2
– 4 ?? = 54 + ?? 2
– 10 ??
6 ?? = 50
3 ?? = 25
3. If ???@ ?? ?@ a, ?? ?@ ?? ?@ b, ?? ?@ ?? ?@ c and
b c
a c 0
a b
?? ???]
?? , then
a b
a b c
?? ?K?K
?? ?M ?? ?M ?? ?M is equal to :
(1) 2 (2) 3
(3) 0 (4) 1
Ans. (3)
Sol. R
1
?? R
1
– R
2
, R
2
?? ?@ R
2
– R
3
a b 0
0 b c 0
a b
?? ?M ?M ?? ?? ?M ?M ?? ?] ?? ( ?? –a) ( ?? ( ?? –b) – b(c– ?? )) – (b – ?? ) (– a(c - ?? )) = 0
?? ( ?? – a) ( ?? – b) – b( ?? – a) (c – ?? ) + a(b - ?? ) (c – ?? )
b a
0
c b a
?? ?K ?K ?] ?? ?M ?? ?M ?? ?M 4. In an increasing geometric progression ol positive
terms, the sum of the second and sixth terms is
70
3
and the product of the third and fifth terms is
49. Then the sum of the 4
th
, 6
th
and 8
th
terms is :-
(1) 96 (2) 78
(3) 91 (4) 84
Ans. (3)
Sol.
2 6
70
T T
3
?K?]
ar + ar
5
=
70
3
T
3
. T
5
= 49
ar
2
. ar
4
= 49
a
2
r
6
= 49
ar
3
= +7,
3
7
a
r
?]
ar(1 + r
4
) =
70
3
4 2
2
7 70
(1 r ) ,r t
3 r
?K ?] ?]
2
1 10
(1 t )
t 3
?K?]
3t
2
– 10t + 3 = 0
1
t 3,
3
?]
Increasing G.P. r
2
= 3, r 3 ?]
T
4
+ T
6
+ T
8
= ar
3
+ ar
5
+ ar
7
= ar
3
(1 + r
2
+ r
4
)
= 7(1 + 3 + 9) = 91
5. The number of ways five alphabets can be chosen
from the alphabets of the word MATHEMATICS,
where the chosen alphabets are not necessarily
distinct, is equal to :
(1) 175 (2) 181
(3) 177 (4) 179
Ans. (4)
Sol. AA, MM, TT, H, I, C, S, E
(1) All distinct
8
C
5
?? 56
(2) 2 same, 3 different
3
C
?Q ×
7
C
3
?? 105
(3) 2 same I
st
kind, 2 same 2
nd
kind, 1 different
3
C
2
×
6
C
1
?? 18
Total ?? 179
6. The sum of all possible values of ???@?? [– ?@?? , 2 ?? ], for
which
1 icos
1 2icos
?K??
?M??
is purely imaginary, is equal
to
(1) 2 ?? (2) 3 ??
(3) 5 ?? (4) 4 ??
Ans. (2)
Sol.
1 icos
Z
1 2icos
?K??
?] ?M??
Z Z ?]?M ??
1 icos 1 icos
1 2icos 1 2icos
????
?K ?? ?K ?? ?]?M
????
?M ?? ?M ?? ????
(1+ icos ?? ) ?H ?I 1 2icos ?M??
=–(1 – 2i cos ?? ) ?H ?I 1 icos ?K??
(1+icos ?? ) (1 + 2icos ?? ) = –(1 – 2icos ?? ) (1 – icos ?? )
1 + 3icos ?? – 2cos
2
?? = –(1 – 3icos ?? – 2cos
2
?? )
2 – 4cos
2
?? = 0
???@ cos
2
?? =
1
2
?@??
3 3 5 7
, , , , ,
4 4 4 4 4 4
?? ?? ?? ?? ?? ?? ?? ?] ?M ?M
sum = 3 ??
7. If the system of equations x + 4y – z = ?? ,
7x + 9y + ?? z = –3, 5x + y + 2z = –1 has infinitely
many solutions, then (2 ?? . + 3 ?? ) is equal to :
(1) 2 (2) –3
(3) 3 (4) –2
Ans. (2)
Sol.
1 4 1
7 9 0
5 1 2
?M ?d ?] ?? ?]
?? (18– ?? ) – 4(14–5 ?? ) – (7 – 45) = 0 ?? ?@?? = 0
?d = ?d x
= ?d y
= ?d z
= 0 (For infinite solution)
x
4 1
3 9 0
1 1 2
???M
?d ?] ?M ?? ?] ?M
?? (18 – ?? ) – 4(–6 + ?? ) –1(–3 + 9) = 0
18 ?? + 24 – 6 = 0 ?? ?? = –1 ?@
Page 3
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Monday 08
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. If the image of the point (-4, 5) in the line
x + 2y = 2 lies on the circle (x + 4)
2
+ (y-3)
2
= r
2
,
then r is equal lo :
(1) 1 (2) 2
(3) 75 (4) 3
Ans. (2)
Sol. Image of point (–4, 5)
1 1 1 1
2 2
x x y y ax by c
2
a b a b
?M ?M ?K ?K ????
?] ?] ?M????
?K ????
Line : x + 2y – 2 = 0
2 2
x 4 y 5 4 10 2
2
1 2 1 2
?K ?M ?M ?K ?M????
?] ?] ?M????
?K ????
8
5
?M ?] 8 28
x 4
5 5
?] ?M ?M ?] ?M 16 9
y 5
5 5
?] ?M ?K ?] Point lies on circle (x + 4)
2
+ (y – 3)
2
= r
2
2
2
64 9
3 r
25 5
????
?K ?M ?] ????
????
2
100
r , r 2
25
?]?]
2. Let
ˆˆ ˆ
a i 2j 3k ?] ?K ?K ,
ˆˆ ˆ
b 2i 3j 5k ?] ?K ?M and
ˆˆ ˆ
c 3i j k ?] ?M ?K ?? be three vectors. Let r be a unit
vector along b c ?K . If r . a 3 ?] , then 3 ?? is equal
to :
(1) 27 (2) 25
(3) 25 (4) 21
Ans. (2)
Sol. ?H ?I r k b c ?]?K
r . a 3 ?]
?H ?I r.a k b.a c.a ?]?K
3 = k(2 + 6 – 15 + 3 – 2 + 3 ?? )
3 = k(–6 + 3 ?? ) …(1)
ˆˆ ˆ
r k(5i 2j (5 )k) ?] ?K ?M ?M ?? 2
r k 25 4 25 10 1 ?] ?K ?K ?K ?? ?M ?? ?] …(2)
3 1
k
6 3 2
?]?]
?M ?K ?? ?M ?K ?? put in (2)
4 + ?? 2
– 4 ?? = 54 + ?? 2
– 10 ??
6 ?? = 50
3 ?? = 25
3. If ???@ ?? ?@ a, ?? ?@ ?? ?@ b, ?? ?@ ?? ?@ c and
b c
a c 0
a b
?? ???]
?? , then
a b
a b c
?? ?K?K
?? ?M ?? ?M ?? ?M is equal to :
(1) 2 (2) 3
(3) 0 (4) 1
Ans. (3)
Sol. R
1
?? R
1
– R
2
, R
2
?? ?@ R
2
– R
3
a b 0
0 b c 0
a b
?? ?M ?M ?? ?? ?M ?M ?? ?] ?? ( ?? –a) ( ?? ( ?? –b) – b(c– ?? )) – (b – ?? ) (– a(c - ?? )) = 0
?? ( ?? – a) ( ?? – b) – b( ?? – a) (c – ?? ) + a(b - ?? ) (c – ?? )
b a
0
c b a
?? ?K ?K ?] ?? ?M ?? ?M ?? ?M 4. In an increasing geometric progression ol positive
terms, the sum of the second and sixth terms is
70
3
and the product of the third and fifth terms is
49. Then the sum of the 4
th
, 6
th
and 8
th
terms is :-
(1) 96 (2) 78
(3) 91 (4) 84
Ans. (3)
Sol.
2 6
70
T T
3
?K?]
ar + ar
5
=
70
3
T
3
. T
5
= 49
ar
2
. ar
4
= 49
a
2
r
6
= 49
ar
3
= +7,
3
7
a
r
?]
ar(1 + r
4
) =
70
3
4 2
2
7 70
(1 r ) ,r t
3 r
?K ?] ?]
2
1 10
(1 t )
t 3
?K?]
3t
2
– 10t + 3 = 0
1
t 3,
3
?]
Increasing G.P. r
2
= 3, r 3 ?]
T
4
+ T
6
+ T
8
= ar
3
+ ar
5
+ ar
7
= ar
3
(1 + r
2
+ r
4
)
= 7(1 + 3 + 9) = 91
5. The number of ways five alphabets can be chosen
from the alphabets of the word MATHEMATICS,
where the chosen alphabets are not necessarily
distinct, is equal to :
(1) 175 (2) 181
(3) 177 (4) 179
Ans. (4)
Sol. AA, MM, TT, H, I, C, S, E
(1) All distinct
8
C
5
?? 56
(2) 2 same, 3 different
3
C
?Q ×
7
C
3
?? 105
(3) 2 same I
st
kind, 2 same 2
nd
kind, 1 different
3
C
2
×
6
C
1
?? 18
Total ?? 179
6. The sum of all possible values of ???@?? [– ?@?? , 2 ?? ], for
which
1 icos
1 2icos
?K??
?M??
is purely imaginary, is equal
to
(1) 2 ?? (2) 3 ??
(3) 5 ?? (4) 4 ??
Ans. (2)
Sol.
1 icos
Z
1 2icos
?K??
?] ?M??
Z Z ?]?M ??
1 icos 1 icos
1 2icos 1 2icos
????
?K ?? ?K ?? ?]?M
????
?M ?? ?M ?? ????
(1+ icos ?? ) ?H ?I 1 2icos ?M??
=–(1 – 2i cos ?? ) ?H ?I 1 icos ?K??
(1+icos ?? ) (1 + 2icos ?? ) = –(1 – 2icos ?? ) (1 – icos ?? )
1 + 3icos ?? – 2cos
2
?? = –(1 – 3icos ?? – 2cos
2
?? )
2 – 4cos
2
?? = 0
???@ cos
2
?? =
1
2
?@??
3 3 5 7
, , , , ,
4 4 4 4 4 4
?? ?? ?? ?? ?? ?? ?? ?] ?M ?M
sum = 3 ??
7. If the system of equations x + 4y – z = ?? ,
7x + 9y + ?? z = –3, 5x + y + 2z = –1 has infinitely
many solutions, then (2 ?? . + 3 ?? ) is equal to :
(1) 2 (2) –3
(3) 3 (4) –2
Ans. (2)
Sol.
1 4 1
7 9 0
5 1 2
?M ?d ?] ?? ?]
?? (18– ?? ) – 4(14–5 ?? ) – (7 – 45) = 0 ?? ?@?? = 0
?d = ?d x
= ?d y
= ?d z
= 0 (For infinite solution)
x
4 1
3 9 0
1 1 2
???M
?d ?] ?M ?? ?] ?M
?? (18 – ?? ) – 4(–6 + ?? ) –1(–3 + 9) = 0
18 ?? + 24 – 6 = 0 ?? ?? = –1 ?@
8. If the shortest distance between the lines
x y 4 z 3
2 3 4
?M ?? ?M ?M ?]?] and
x 2 y 4 z 7
4 6 8
?M ?M ?M ?]?] is
13
29
, then a value
of ?? is :
(1) –
13
25
(2)
13
25
(3) 1 (4) –1
Ans. (3)
Sol.
?H ?I ?H ?I 1
1
2
2
ˆ ˆ
b 2i 3j 4k
ˆ ˆ ˆ ˆ ˆˆ
r i 4 j 3k (2i 3j 4k)
ˆˆ ˆ
a i 4 j 3k
ˆ ˆ ˆ ˆ ˆˆ
r 2i 4 j 7k (2i 3j 4k)
ˆˆ ˆ
a 2i 4 j 7k
?] ?K ?K ?? ?? ?] ?? ?K ?K ?K ?? ?K ?K ?K ?? ?K ?K ?? ?] ?K ?K ?K ?? ?K ?K ?? ?? ?]?K?K
2 1
b (a a )
13
Shortest dist.
b
29
???M
?]?]
?H ?I ?H ?I ˆ ˆ ˆ ˆˆ
2i 3j 4k (2 )i 4k
13
29 29
?K ?K ?? ?M ?? ?K ?]
ˆ ˆ ˆ ˆ
8j 3(2 )k 12i 4(2 ) j 13 ?M ?M ?M ?? ?K ?K ?M ?? ?]
ˆˆ ˆ
12i 4 j (3 6)k 13 ?M ?? ?K ?? ?M ?]
144 + 16?@??
2
+ (3 ?? – 6)
2
= 169
16 ?? 2
+ (3 ?? – 6)
2
= 25 = ?? ?@?? = 1
9. If the value of
3cos36 5sin18
5cos36 3sin18
?? ?K ?? ?? ?M ?? is
a 5 b
c
?M ,
where a, b, c are natural numbers and gcd(a, c) = 1,
then a + b + c is equal to :
(1) 50 (2) 40
(3) 52 (4) 54
Ans. (3)
Sol.
?H ?I 3 5 1 5 1
5
8 5 2
4 4
2 5 8 5 1 5 1
5 3
4 4
????
?K?M
?K????
?M ????
?] ?? ?? ?? ?? ?K ?K?M
?M ?? ?? ?? ?? ?? ?? ?? ??
4 5 1 5 4
5 4 5 4
?M?M
?]??
?K?M
20 16 5 5 4
11
?M ?M ?K ?] ?M
17 5 24
11
?M ?] ?? a = 17, b = 27, c = 11
a + b + c = 52
10. Let y = y(x) be the solution curve of the
differential equation secy
dy
dx
+ 2xsiny = x
3
cosy,
y(1) = 0. Then
?H ?I y 3 is equal to :
(1)
3
?? (2)
6
??
(3)
4
?? (4)
12
??
Ans. (3)
Sol. sec
2
y
dy
dx
+ 2xsiny secy = x
3
cosy secy
sec
2
y
dy
dx
+ 2xtany = x
3
tany = t ?@ ??
2
dy dt
sec y
dx dx
?]
3
dt
2xt x
dx
?K?] , If
2 2xdx
x
e e
???]?]
2 2
x 3 x
te x .e dx c ?]?K
??
x
2
= Z ??
?{ ?} Z Z Z Z
1 1
t.e e .ZdZ e .Z e c
2 2
?] ?] ?M ?K ??
2
2 x
2tan y (x 1) 2ce
?M ?] ?M ?K
y(1) = 0 ?? c = 0 ?? y( 3)
4
?? ?]
11. The area of the region in the first quadrant inside
the circle x
2
+ y
2
= 8 and outside the pnrabola
y
2
= 2x is equal to :
(1)
1
2 3
?? ?M (2)
2
3
???M
(3)
2
2 3
?? ?M (4)
1
3
???M
Ans. (2)
Page 4
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Monday 08
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. If the image of the point (-4, 5) in the line
x + 2y = 2 lies on the circle (x + 4)
2
+ (y-3)
2
= r
2
,
then r is equal lo :
(1) 1 (2) 2
(3) 75 (4) 3
Ans. (2)
Sol. Image of point (–4, 5)
1 1 1 1
2 2
x x y y ax by c
2
a b a b
?M ?M ?K ?K ????
?] ?] ?M????
?K ????
Line : x + 2y – 2 = 0
2 2
x 4 y 5 4 10 2
2
1 2 1 2
?K ?M ?M ?K ?M????
?] ?] ?M????
?K ????
8
5
?M ?] 8 28
x 4
5 5
?] ?M ?M ?] ?M 16 9
y 5
5 5
?] ?M ?K ?] Point lies on circle (x + 4)
2
+ (y – 3)
2
= r
2
2
2
64 9
3 r
25 5
????
?K ?M ?] ????
????
2
100
r , r 2
25
?]?]
2. Let
ˆˆ ˆ
a i 2j 3k ?] ?K ?K ,
ˆˆ ˆ
b 2i 3j 5k ?] ?K ?M and
ˆˆ ˆ
c 3i j k ?] ?M ?K ?? be three vectors. Let r be a unit
vector along b c ?K . If r . a 3 ?] , then 3 ?? is equal
to :
(1) 27 (2) 25
(3) 25 (4) 21
Ans. (2)
Sol. ?H ?I r k b c ?]?K
r . a 3 ?]
?H ?I r.a k b.a c.a ?]?K
3 = k(2 + 6 – 15 + 3 – 2 + 3 ?? )
3 = k(–6 + 3 ?? ) …(1)
ˆˆ ˆ
r k(5i 2j (5 )k) ?] ?K ?M ?M ?? 2
r k 25 4 25 10 1 ?] ?K ?K ?K ?? ?M ?? ?] …(2)
3 1
k
6 3 2
?]?]
?M ?K ?? ?M ?K ?? put in (2)
4 + ?? 2
– 4 ?? = 54 + ?? 2
– 10 ??
6 ?? = 50
3 ?? = 25
3. If ???@ ?? ?@ a, ?? ?@ ?? ?@ b, ?? ?@ ?? ?@ c and
b c
a c 0
a b
?? ???]
?? , then
a b
a b c
?? ?K?K
?? ?M ?? ?M ?? ?M is equal to :
(1) 2 (2) 3
(3) 0 (4) 1
Ans. (3)
Sol. R
1
?? R
1
– R
2
, R
2
?? ?@ R
2
– R
3
a b 0
0 b c 0
a b
?? ?M ?M ?? ?? ?M ?M ?? ?] ?? ( ?? –a) ( ?? ( ?? –b) – b(c– ?? )) – (b – ?? ) (– a(c - ?? )) = 0
?? ( ?? – a) ( ?? – b) – b( ?? – a) (c – ?? ) + a(b - ?? ) (c – ?? )
b a
0
c b a
?? ?K ?K ?] ?? ?M ?? ?M ?? ?M 4. In an increasing geometric progression ol positive
terms, the sum of the second and sixth terms is
70
3
and the product of the third and fifth terms is
49. Then the sum of the 4
th
, 6
th
and 8
th
terms is :-
(1) 96 (2) 78
(3) 91 (4) 84
Ans. (3)
Sol.
2 6
70
T T
3
?K?]
ar + ar
5
=
70
3
T
3
. T
5
= 49
ar
2
. ar
4
= 49
a
2
r
6
= 49
ar
3
= +7,
3
7
a
r
?]
ar(1 + r
4
) =
70
3
4 2
2
7 70
(1 r ) ,r t
3 r
?K ?] ?]
2
1 10
(1 t )
t 3
?K?]
3t
2
– 10t + 3 = 0
1
t 3,
3
?]
Increasing G.P. r
2
= 3, r 3 ?]
T
4
+ T
6
+ T
8
= ar
3
+ ar
5
+ ar
7
= ar
3
(1 + r
2
+ r
4
)
= 7(1 + 3 + 9) = 91
5. The number of ways five alphabets can be chosen
from the alphabets of the word MATHEMATICS,
where the chosen alphabets are not necessarily
distinct, is equal to :
(1) 175 (2) 181
(3) 177 (4) 179
Ans. (4)
Sol. AA, MM, TT, H, I, C, S, E
(1) All distinct
8
C
5
?? 56
(2) 2 same, 3 different
3
C
?Q ×
7
C
3
?? 105
(3) 2 same I
st
kind, 2 same 2
nd
kind, 1 different
3
C
2
×
6
C
1
?? 18
Total ?? 179
6. The sum of all possible values of ???@?? [– ?@?? , 2 ?? ], for
which
1 icos
1 2icos
?K??
?M??
is purely imaginary, is equal
to
(1) 2 ?? (2) 3 ??
(3) 5 ?? (4) 4 ??
Ans. (2)
Sol.
1 icos
Z
1 2icos
?K??
?] ?M??
Z Z ?]?M ??
1 icos 1 icos
1 2icos 1 2icos
????
?K ?? ?K ?? ?]?M
????
?M ?? ?M ?? ????
(1+ icos ?? ) ?H ?I 1 2icos ?M??
=–(1 – 2i cos ?? ) ?H ?I 1 icos ?K??
(1+icos ?? ) (1 + 2icos ?? ) = –(1 – 2icos ?? ) (1 – icos ?? )
1 + 3icos ?? – 2cos
2
?? = –(1 – 3icos ?? – 2cos
2
?? )
2 – 4cos
2
?? = 0
???@ cos
2
?? =
1
2
?@??
3 3 5 7
, , , , ,
4 4 4 4 4 4
?? ?? ?? ?? ?? ?? ?? ?] ?M ?M
sum = 3 ??
7. If the system of equations x + 4y – z = ?? ,
7x + 9y + ?? z = –3, 5x + y + 2z = –1 has infinitely
many solutions, then (2 ?? . + 3 ?? ) is equal to :
(1) 2 (2) –3
(3) 3 (4) –2
Ans. (2)
Sol.
1 4 1
7 9 0
5 1 2
?M ?d ?] ?? ?]
?? (18– ?? ) – 4(14–5 ?? ) – (7 – 45) = 0 ?? ?@?? = 0
?d = ?d x
= ?d y
= ?d z
= 0 (For infinite solution)
x
4 1
3 9 0
1 1 2
???M
?d ?] ?M ?? ?] ?M
?? (18 – ?? ) – 4(–6 + ?? ) –1(–3 + 9) = 0
18 ?? + 24 – 6 = 0 ?? ?? = –1 ?@
8. If the shortest distance between the lines
x y 4 z 3
2 3 4
?M ?? ?M ?M ?]?] and
x 2 y 4 z 7
4 6 8
?M ?M ?M ?]?] is
13
29
, then a value
of ?? is :
(1) –
13
25
(2)
13
25
(3) 1 (4) –1
Ans. (3)
Sol.
?H ?I ?H ?I 1
1
2
2
ˆ ˆ
b 2i 3j 4k
ˆ ˆ ˆ ˆ ˆˆ
r i 4 j 3k (2i 3j 4k)
ˆˆ ˆ
a i 4 j 3k
ˆ ˆ ˆ ˆ ˆˆ
r 2i 4 j 7k (2i 3j 4k)
ˆˆ ˆ
a 2i 4 j 7k
?] ?K ?K ?? ?? ?] ?? ?K ?K ?K ?? ?K ?K ?K ?? ?K ?K ?? ?] ?K ?K ?K ?? ?K ?K ?? ?? ?]?K?K
2 1
b (a a )
13
Shortest dist.
b
29
???M
?]?]
?H ?I ?H ?I ˆ ˆ ˆ ˆˆ
2i 3j 4k (2 )i 4k
13
29 29
?K ?K ?? ?M ?? ?K ?]
ˆ ˆ ˆ ˆ
8j 3(2 )k 12i 4(2 ) j 13 ?M ?M ?M ?? ?K ?K ?M ?? ?]
ˆˆ ˆ
12i 4 j (3 6)k 13 ?M ?? ?K ?? ?M ?]
144 + 16?@??
2
+ (3 ?? – 6)
2
= 169
16 ?? 2
+ (3 ?? – 6)
2
= 25 = ?? ?@?? = 1
9. If the value of
3cos36 5sin18
5cos36 3sin18
?? ?K ?? ?? ?M ?? is
a 5 b
c
?M ,
where a, b, c are natural numbers and gcd(a, c) = 1,
then a + b + c is equal to :
(1) 50 (2) 40
(3) 52 (4) 54
Ans. (3)
Sol.
?H ?I 3 5 1 5 1
5
8 5 2
4 4
2 5 8 5 1 5 1
5 3
4 4
????
?K?M
?K????
?M ????
?] ?? ?? ?? ?? ?K ?K?M
?M ?? ?? ?? ?? ?? ?? ?? ??
4 5 1 5 4
5 4 5 4
?M?M
?]??
?K?M
20 16 5 5 4
11
?M ?M ?K ?] ?M
17 5 24
11
?M ?] ?? a = 17, b = 27, c = 11
a + b + c = 52
10. Let y = y(x) be the solution curve of the
differential equation secy
dy
dx
+ 2xsiny = x
3
cosy,
y(1) = 0. Then
?H ?I y 3 is equal to :
(1)
3
?? (2)
6
??
(3)
4
?? (4)
12
??
Ans. (3)
Sol. sec
2
y
dy
dx
+ 2xsiny secy = x
3
cosy secy
sec
2
y
dy
dx
+ 2xtany = x
3
tany = t ?@ ??
2
dy dt
sec y
dx dx
?]
3
dt
2xt x
dx
?K?] , If
2 2xdx
x
e e
???]?]
2 2
x 3 x
te x .e dx c ?]?K
??
x
2
= Z ??
?{ ?} Z Z Z Z
1 1
t.e e .ZdZ e .Z e c
2 2
?] ?] ?M ?K ??
2
2 x
2tan y (x 1) 2ce
?M ?] ?M ?K
y(1) = 0 ?? c = 0 ?? y( 3)
4
?? ?]
11. The area of the region in the first quadrant inside
the circle x
2
+ y
2
= 8 and outside the pnrabola
y
2
= 2x is equal to :
(1)
1
2 3
?? ?M (2)
2
3
???M
(3)
2
2 3
?? ?M (4)
1
3
???M
Ans. (2)
Sol.
(2 ,0)
x=2
Required area = Ar(circle from 0 to 2) –
ar(para from 0 to 2)
2
2
2
0
0
8 x dx 2x dx ?] ?M ?M ????
2
2
2 1
0
0
x 8 x x x
8 x sin 2
2 2 3 / 2
2 2
?M ????
????
?] ?M ?K ?M ????
????
????
????
?H ?I 1
2 8 2 2 2
8 4 sin 2 2 0
2 2 3
2 2
?M ?] ?M ?K ?M ?M
??
8 2
2 4 .
4 3 3
?? ?K ?M ?] ?? ?M
12. If the line segment joining the points (5, 2) and
(2, a) subtends an angle
4
?? at the origin, then the
absolute value of the product of all possible values
of a is :
(1) 6 (2) 8
(3) 2 (4) 4
Ans. (4)
Sol.
B(2, a)
?? /4
A(5,2)
O
OA
2
m
5
?]
OB
a
m
2
?]
2 a
tan
5 2
4
?? ?M ?]
4 5a
1
10 2a
?M ?] ?K
4 – 5a = ±(10 + 2a)
4 – 5a = 10 + 2a 4 – 5a = –10 – 2a
?? 7a + 6 = 0 3a = 14
??
6
a
7
?]?M
14
a
3
?]?K
6 14
4
7 3
?M ?? ?] ?M
13. Let
ˆˆ ˆ
a 4i j k ?] ?M ?K ,
ˆˆ ˆ
b 11i j k ?] ?M ?K and c be
a vector such that
?H ?I ?H ?I a b c c 2a 3b ?K ?? ?] ?? ?M ?K .
If ?H ?I 2a 3b .c 1670 ?K?] , then
2
| c | is equal to :
(1) 1627 (2) 1618
(3) 1600 (4) 1609
Ans. (2)
Sol. ?H ?I ?H ?I a b c c 2a 3b 0 ?K ?? ?M ?? ?M ?K ?]
?H ?I ?H ?I a b c 2a 3b c 0 ?K ?? ?K ?M ?K ?? ?]
?? ?H ?I a b 2a 3b) c 0 ?K ?M ?K ?? ?]
?? c (4b a) ?] ?? ?M
?? ?H ?I ˆ ˆ ˆ ˆ ˆˆ
44i 4 j 4k 4i j k ?] ?? ?M ?K ?M ?K ?M
?H ?I ˆˆ ˆ
40i 3j 3k ?] ?? ?M ?K
Now
?H ?I ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
8i 2 j 2k 33i 3j 3k . (40i 3j 3k) 1670 ?M ?K ?K ?M ?K ?? ?M ?K ?]
?? ?H ?I ˆ ˆ ˆ ˆ ˆˆ
41i 5j 5k .(40i 3j 3k) 1670 ?M ?K ?M ?K ?? ?? ?] )
?? (1640 + 15 + 15) ?? = 1670 ?? ?? = 1
so
ˆˆ ˆ
c 40i 3j 3k ?] ?M ?M
??
2
c 1600 9 9 1618 ?] ?K ?K ?]
Page 5
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Monday 08
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. If the image of the point (-4, 5) in the line
x + 2y = 2 lies on the circle (x + 4)
2
+ (y-3)
2
= r
2
,
then r is equal lo :
(1) 1 (2) 2
(3) 75 (4) 3
Ans. (2)
Sol. Image of point (–4, 5)
1 1 1 1
2 2
x x y y ax by c
2
a b a b
?M ?M ?K ?K ????
?] ?] ?M????
?K ????
Line : x + 2y – 2 = 0
2 2
x 4 y 5 4 10 2
2
1 2 1 2
?K ?M ?M ?K ?M????
?] ?] ?M????
?K ????
8
5
?M ?] 8 28
x 4
5 5
?] ?M ?M ?] ?M 16 9
y 5
5 5
?] ?M ?K ?] Point lies on circle (x + 4)
2
+ (y – 3)
2
= r
2
2
2
64 9
3 r
25 5
????
?K ?M ?] ????
????
2
100
r , r 2
25
?]?]
2. Let
ˆˆ ˆ
a i 2j 3k ?] ?K ?K ,
ˆˆ ˆ
b 2i 3j 5k ?] ?K ?M and
ˆˆ ˆ
c 3i j k ?] ?M ?K ?? be three vectors. Let r be a unit
vector along b c ?K . If r . a 3 ?] , then 3 ?? is equal
to :
(1) 27 (2) 25
(3) 25 (4) 21
Ans. (2)
Sol. ?H ?I r k b c ?]?K
r . a 3 ?]
?H ?I r.a k b.a c.a ?]?K
3 = k(2 + 6 – 15 + 3 – 2 + 3 ?? )
3 = k(–6 + 3 ?? ) …(1)
ˆˆ ˆ
r k(5i 2j (5 )k) ?] ?K ?M ?M ?? 2
r k 25 4 25 10 1 ?] ?K ?K ?K ?? ?M ?? ?] …(2)
3 1
k
6 3 2
?]?]
?M ?K ?? ?M ?K ?? put in (2)
4 + ?? 2
– 4 ?? = 54 + ?? 2
– 10 ??
6 ?? = 50
3 ?? = 25
3. If ???@ ?? ?@ a, ?? ?@ ?? ?@ b, ?? ?@ ?? ?@ c and
b c
a c 0
a b
?? ???]
?? , then
a b
a b c
?? ?K?K
?? ?M ?? ?M ?? ?M is equal to :
(1) 2 (2) 3
(3) 0 (4) 1
Ans. (3)
Sol. R
1
?? R
1
– R
2
, R
2
?? ?@ R
2
– R
3
a b 0
0 b c 0
a b
?? ?M ?M ?? ?? ?M ?M ?? ?] ?? ( ?? –a) ( ?? ( ?? –b) – b(c– ?? )) – (b – ?? ) (– a(c - ?? )) = 0
?? ( ?? – a) ( ?? – b) – b( ?? – a) (c – ?? ) + a(b - ?? ) (c – ?? )
b a
0
c b a
?? ?K ?K ?] ?? ?M ?? ?M ?? ?M 4. In an increasing geometric progression ol positive
terms, the sum of the second and sixth terms is
70
3
and the product of the third and fifth terms is
49. Then the sum of the 4
th
, 6
th
and 8
th
terms is :-
(1) 96 (2) 78
(3) 91 (4) 84
Ans. (3)
Sol.
2 6
70
T T
3
?K?]
ar + ar
5
=
70
3
T
3
. T
5
= 49
ar
2
. ar
4
= 49
a
2
r
6
= 49
ar
3
= +7,
3
7
a
r
?]
ar(1 + r
4
) =
70
3
4 2
2
7 70
(1 r ) ,r t
3 r
?K ?] ?]
2
1 10
(1 t )
t 3
?K?]
3t
2
– 10t + 3 = 0
1
t 3,
3
?]
Increasing G.P. r
2
= 3, r 3 ?]
T
4
+ T
6
+ T
8
= ar
3
+ ar
5
+ ar
7
= ar
3
(1 + r
2
+ r
4
)
= 7(1 + 3 + 9) = 91
5. The number of ways five alphabets can be chosen
from the alphabets of the word MATHEMATICS,
where the chosen alphabets are not necessarily
distinct, is equal to :
(1) 175 (2) 181
(3) 177 (4) 179
Ans. (4)
Sol. AA, MM, TT, H, I, C, S, E
(1) All distinct
8
C
5
?? 56
(2) 2 same, 3 different
3
C
?Q ×
7
C
3
?? 105
(3) 2 same I
st
kind, 2 same 2
nd
kind, 1 different
3
C
2
×
6
C
1
?? 18
Total ?? 179
6. The sum of all possible values of ???@?? [– ?@?? , 2 ?? ], for
which
1 icos
1 2icos
?K??
?M??
is purely imaginary, is equal
to
(1) 2 ?? (2) 3 ??
(3) 5 ?? (4) 4 ??
Ans. (2)
Sol.
1 icos
Z
1 2icos
?K??
?] ?M??
Z Z ?]?M ??
1 icos 1 icos
1 2icos 1 2icos
????
?K ?? ?K ?? ?]?M
????
?M ?? ?M ?? ????
(1+ icos ?? ) ?H ?I 1 2icos ?M??
=–(1 – 2i cos ?? ) ?H ?I 1 icos ?K??
(1+icos ?? ) (1 + 2icos ?? ) = –(1 – 2icos ?? ) (1 – icos ?? )
1 + 3icos ?? – 2cos
2
?? = –(1 – 3icos ?? – 2cos
2
?? )
2 – 4cos
2
?? = 0
???@ cos
2
?? =
1
2
?@??
3 3 5 7
, , , , ,
4 4 4 4 4 4
?? ?? ?? ?? ?? ?? ?? ?] ?M ?M
sum = 3 ??
7. If the system of equations x + 4y – z = ?? ,
7x + 9y + ?? z = –3, 5x + y + 2z = –1 has infinitely
many solutions, then (2 ?? . + 3 ?? ) is equal to :
(1) 2 (2) –3
(3) 3 (4) –2
Ans. (2)
Sol.
1 4 1
7 9 0
5 1 2
?M ?d ?] ?? ?]
?? (18– ?? ) – 4(14–5 ?? ) – (7 – 45) = 0 ?? ?@?? = 0
?d = ?d x
= ?d y
= ?d z
= 0 (For infinite solution)
x
4 1
3 9 0
1 1 2
???M
?d ?] ?M ?? ?] ?M
?? (18 – ?? ) – 4(–6 + ?? ) –1(–3 + 9) = 0
18 ?? + 24 – 6 = 0 ?? ?? = –1 ?@
8. If the shortest distance between the lines
x y 4 z 3
2 3 4
?M ?? ?M ?M ?]?] and
x 2 y 4 z 7
4 6 8
?M ?M ?M ?]?] is
13
29
, then a value
of ?? is :
(1) –
13
25
(2)
13
25
(3) 1 (4) –1
Ans. (3)
Sol.
?H ?I ?H ?I 1
1
2
2
ˆ ˆ
b 2i 3j 4k
ˆ ˆ ˆ ˆ ˆˆ
r i 4 j 3k (2i 3j 4k)
ˆˆ ˆ
a i 4 j 3k
ˆ ˆ ˆ ˆ ˆˆ
r 2i 4 j 7k (2i 3j 4k)
ˆˆ ˆ
a 2i 4 j 7k
?] ?K ?K ?? ?? ?] ?? ?K ?K ?K ?? ?K ?K ?K ?? ?K ?K ?? ?] ?K ?K ?K ?? ?K ?K ?? ?? ?]?K?K
2 1
b (a a )
13
Shortest dist.
b
29
???M
?]?]
?H ?I ?H ?I ˆ ˆ ˆ ˆˆ
2i 3j 4k (2 )i 4k
13
29 29
?K ?K ?? ?M ?? ?K ?]
ˆ ˆ ˆ ˆ
8j 3(2 )k 12i 4(2 ) j 13 ?M ?M ?M ?? ?K ?K ?M ?? ?]
ˆˆ ˆ
12i 4 j (3 6)k 13 ?M ?? ?K ?? ?M ?]
144 + 16?@??
2
+ (3 ?? – 6)
2
= 169
16 ?? 2
+ (3 ?? – 6)
2
= 25 = ?? ?@?? = 1
9. If the value of
3cos36 5sin18
5cos36 3sin18
?? ?K ?? ?? ?M ?? is
a 5 b
c
?M ,
where a, b, c are natural numbers and gcd(a, c) = 1,
then a + b + c is equal to :
(1) 50 (2) 40
(3) 52 (4) 54
Ans. (3)
Sol.
?H ?I 3 5 1 5 1
5
8 5 2
4 4
2 5 8 5 1 5 1
5 3
4 4
????
?K?M
?K????
?M ????
?] ?? ?? ?? ?? ?K ?K?M
?M ?? ?? ?? ?? ?? ?? ?? ??
4 5 1 5 4
5 4 5 4
?M?M
?]??
?K?M
20 16 5 5 4
11
?M ?M ?K ?] ?M
17 5 24
11
?M ?] ?? a = 17, b = 27, c = 11
a + b + c = 52
10. Let y = y(x) be the solution curve of the
differential equation secy
dy
dx
+ 2xsiny = x
3
cosy,
y(1) = 0. Then
?H ?I y 3 is equal to :
(1)
3
?? (2)
6
??
(3)
4
?? (4)
12
??
Ans. (3)
Sol. sec
2
y
dy
dx
+ 2xsiny secy = x
3
cosy secy
sec
2
y
dy
dx
+ 2xtany = x
3
tany = t ?@ ??
2
dy dt
sec y
dx dx
?]
3
dt
2xt x
dx
?K?] , If
2 2xdx
x
e e
???]?]
2 2
x 3 x
te x .e dx c ?]?K
??
x
2
= Z ??
?{ ?} Z Z Z Z
1 1
t.e e .ZdZ e .Z e c
2 2
?] ?] ?M ?K ??
2
2 x
2tan y (x 1) 2ce
?M ?] ?M ?K
y(1) = 0 ?? c = 0 ?? y( 3)
4
?? ?]
11. The area of the region in the first quadrant inside
the circle x
2
+ y
2
= 8 and outside the pnrabola
y
2
= 2x is equal to :
(1)
1
2 3
?? ?M (2)
2
3
???M
(3)
2
2 3
?? ?M (4)
1
3
???M
Ans. (2)
Sol.
(2 ,0)
x=2
Required area = Ar(circle from 0 to 2) –
ar(para from 0 to 2)
2
2
2
0
0
8 x dx 2x dx ?] ?M ?M ????
2
2
2 1
0
0
x 8 x x x
8 x sin 2
2 2 3 / 2
2 2
?M ????
????
?] ?M ?K ?M ????
????
????
????
?H ?I 1
2 8 2 2 2
8 4 sin 2 2 0
2 2 3
2 2
?M ?] ?M ?K ?M ?M
??
8 2
2 4 .
4 3 3
?? ?K ?M ?] ?? ?M
12. If the line segment joining the points (5, 2) and
(2, a) subtends an angle
4
?? at the origin, then the
absolute value of the product of all possible values
of a is :
(1) 6 (2) 8
(3) 2 (4) 4
Ans. (4)
Sol.
B(2, a)
?? /4
A(5,2)
O
OA
2
m
5
?]
OB
a
m
2
?]
2 a
tan
5 2
4
?? ?M ?]
4 5a
1
10 2a
?M ?] ?K
4 – 5a = ±(10 + 2a)
4 – 5a = 10 + 2a 4 – 5a = –10 – 2a
?? 7a + 6 = 0 3a = 14
??
6
a
7
?]?M
14
a
3
?]?K
6 14
4
7 3
?M ?? ?] ?M
13. Let
ˆˆ ˆ
a 4i j k ?] ?M ?K ,
ˆˆ ˆ
b 11i j k ?] ?M ?K and c be
a vector such that
?H ?I ?H ?I a b c c 2a 3b ?K ?? ?] ?? ?M ?K .
If ?H ?I 2a 3b .c 1670 ?K?] , then
2
| c | is equal to :
(1) 1627 (2) 1618
(3) 1600 (4) 1609
Ans. (2)
Sol. ?H ?I ?H ?I a b c c 2a 3b 0 ?K ?? ?M ?? ?M ?K ?]
?H ?I ?H ?I a b c 2a 3b c 0 ?K ?? ?K ?M ?K ?? ?]
?? ?H ?I a b 2a 3b) c 0 ?K ?M ?K ?? ?]
?? c (4b a) ?] ?? ?M
?? ?H ?I ˆ ˆ ˆ ˆ ˆˆ
44i 4 j 4k 4i j k ?] ?? ?M ?K ?M ?K ?M
?H ?I ˆˆ ˆ
40i 3j 3k ?] ?? ?M ?K
Now
?H ?I ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
8i 2 j 2k 33i 3j 3k . (40i 3j 3k) 1670 ?M ?K ?K ?M ?K ?? ?M ?K ?]
?? ?H ?I ˆ ˆ ˆ ˆ ˆˆ
41i 5j 5k .(40i 3j 3k) 1670 ?M ?K ?M ?K ?? ?? ?] )
?? (1640 + 15 + 15) ?? = 1670 ?? ?? = 1
so
ˆˆ ˆ
c 40i 3j 3k ?] ?M ?M
??
2
c 1600 9 9 1618 ?] ?K ?K ?]
14. If the function f(x) = 2x
3
– 9ax
2
+ 12a
2
x + 1, a > 0
has a local maximum at x = ?? and a local
minimum x = ?? 2
, then ?? and ?? 2
are the roots of the
equation :
(1) x
2
– 6x + 8 = 0 (2) 8x
2
+ 6x – 8 = 0
(3) 8x
2
– 6x + 1 = 0 (4) x
2
+ 6x + 8 = 0
Ans. (1)
Sol.
f'(x) = 6x
2
– 18ax + 12a
2
= 0
?? ?@ ?? 2
?? + ?? 2
= 3a & ?? × ?? 2
= 2a
2
?@?@?@?@?@?? ?@ ( ?? + ?? 2
)
3
= 27a
3
?? 2a
2
+ 4a
4
+ 3(3a) (2a
2
) = 27a
3
?? 2 + 4a
2
+ 18a = 27a
?? 4a
2
– 9a + 2 = 0
?? 4a
2
– 8a – a + 2 = 0
?? (4a – 1) (a – 2) = 0 ?? a = 2
so 6x
2
– 36x + 48 = 0
?? x
2
– 6x + 8 = 0 (1)
If we take
1
a
4
?] then
1
2
???] which is not possible
15. There are three bags X, Y and Z. Bag X contains 5
one-rupee coins and 4 five-rupee coins; Bag Y
contains 4 one-rupee coins and 5 five-rupee coins
and Bag Z contains 3 one-rupee coins and
6 five-rupee coins. A bag is selected at random and
a coin drawn from it at random is found to be a
one-rupee coin. Then the probability, that it came
from bag Y, is :
(1)
1
3
(2)
1
2
(3)
1
4
(4)
5
12
Ans. (1)
Sol. X Y Z
5 one & 4 five 4 one & 5 five 3 one & 6 five
4 / 9 4 1
P
5 / 9 4 / 9 3 / 9 12 3
?] ?] ?] ?K?K
16. Let
log 4
x
e
dx
6
e 1
?? ?? ?] ?M ?? . Then e
?? and e
– ?? are the
roots of the equation :
(1) 2x
2
– 5x + 2 = 0 (2) x
2
– 2x - 8 = 0
(3) 2x
2
– 5x – 2 = 0 (4) x
2
+ 2x – 8 = 0
Ans. (1)
Sol.
log 4
x
e
dx
6
e 1
?? ?? ?] ?M ??
Let e
x
– 1 = t
2
e
x
dx = 2t dt
2
2dt
t 1
?] ?K ??
= 2 tan
–1
t
?H ?I 4
e
log
1 x
2 tan e 1
?M ?? ?]?M
1 1
2 tan 3 tan e 1
6
?M ?M ?? ?? ????
?] ?M ?M ?] ????
1
tan e 1
3 12
?M??
????
?] ?M ?M ?]
??
1
tan e 1
4
?M??
?? ?M?]
e 2
?? ?]
1
e
2
?M??
?]
2
1
x 2 x 1 0
2
????
?M ?K ?K ?] ????
????
2x
2
– 5x + 2 = 0
17. Let
?? a if a x 0
(x)
x a if 0 x a
?M ?M ?? ?? ?] ?K ?\ ?? f
where a > 0 and g(x) = (f |x| ) – | f (x)| )/2.
Then the function g : [ –a, a] ?? [ –a, a] is
(1) neither one-one nor onto.
(2) both one-one and onto.
(3) one-one.
(4) onto
Ans. (1)
Read More