Page 1
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Friday 05
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let d be the distance of the point of intersection of
the lines
x 6 y z 1
3 2 1
?K?K
?]?] and
x 7 y 9 z 4
4 3 2
?M ?M ?M ?]?] from the point (7, 8, 9). Then
d
2
+ 6 is equal to :
(1) 72 (2) 69
(3) 75 (4) 78
Ans. (3)
Sol.
x 6 y z 1
3 2 1
?K?K
?] ?] ?] ?? …(1)
x = 3 ?? – 6, y = 2 ?? , z = ?? – 1
x 7 y 9 z 4
µ
4 3 2
?M ?M ?M ?] ?] ?] …(2)
x = 4µ + 7, y = 3µ + 9, z = 2µ + 4
3 ?? – 6 = 4µ + 7 ?? 3 ?? – 4µ = 13 …(3) × 2
2 ?? = 3µ + 9 ?? 2 ?? – 3µ = 9 …(4) × 3
6 ?? – 8µ = 26
6 ?? – 9µ = 27
– + – .
µ = –1
?? 3 ?? – 4(–1) = 13
3 ?? = 9
?? = 3
int. point (3, 6, 2) ; (7, 8, 9)
d
2
= 16 + 4 + 49 = 69
Ans. d
2
+ 6 = 69 + 6 = 75
2. Let a rectangle ABCD of sides 2 and 4 be inscribed
in another rectangle PQRS such that the vertices of
the rectangle ABCD lie on the sides of the
rectangle PQRS. Let a and b be the sides of the
rectangle PQRS when its area is maximum. Then
(a + b)
2
is equal to :
(1) 72 (2) 60
(3) 80 (4) 64
Ans. (1 )
Sol.
2cos(90– ?? )
P
B
Q
4
4
R
S
A
2 2
4cos(90– ?? )
2sin(90– ?? )
D
90– ??
??
??
Area = (4cos ?? + 2sin ?? ) (2cos ?? + 4sin ?? )
= 8cos
2
?? + 16sin ?? cos ?? + 4sin ?? cos ?? + 8sin
2
??
= 8 + 20 sin ?? cos ??
= 8 + 10 sin2 ?? ?@ Max Area = 8 + 10 = 18 (sin2 ?? ?@?] ?@?Q?I ?@ ?? ?@?] ?@ ?T?U?? ?@ (a + b)
2
= (4cos ?? + 2sin ?? ?@ + 2cos ?? + 4sin ?? )
2
?@ = (6cos ?? + 6sin ?? )
2
?@ = 36 (sin ?? + cos ?? )
2
?@ ?]?@
2
36( 2) ?@ ?] ?@?W?R
Page 2
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Friday 05
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let d be the distance of the point of intersection of
the lines
x 6 y z 1
3 2 1
?K?K
?]?] and
x 7 y 9 z 4
4 3 2
?M ?M ?M ?]?] from the point (7, 8, 9). Then
d
2
+ 6 is equal to :
(1) 72 (2) 69
(3) 75 (4) 78
Ans. (3)
Sol.
x 6 y z 1
3 2 1
?K?K
?] ?] ?] ?? …(1)
x = 3 ?? – 6, y = 2 ?? , z = ?? – 1
x 7 y 9 z 4
µ
4 3 2
?M ?M ?M ?] ?] ?] …(2)
x = 4µ + 7, y = 3µ + 9, z = 2µ + 4
3 ?? – 6 = 4µ + 7 ?? 3 ?? – 4µ = 13 …(3) × 2
2 ?? = 3µ + 9 ?? 2 ?? – 3µ = 9 …(4) × 3
6 ?? – 8µ = 26
6 ?? – 9µ = 27
– + – .
µ = –1
?? 3 ?? – 4(–1) = 13
3 ?? = 9
?? = 3
int. point (3, 6, 2) ; (7, 8, 9)
d
2
= 16 + 4 + 49 = 69
Ans. d
2
+ 6 = 69 + 6 = 75
2. Let a rectangle ABCD of sides 2 and 4 be inscribed
in another rectangle PQRS such that the vertices of
the rectangle ABCD lie on the sides of the
rectangle PQRS. Let a and b be the sides of the
rectangle PQRS when its area is maximum. Then
(a + b)
2
is equal to :
(1) 72 (2) 60
(3) 80 (4) 64
Ans. (1 )
Sol.
2cos(90– ?? )
P
B
Q
4
4
R
S
A
2 2
4cos(90– ?? )
2sin(90– ?? )
D
90– ??
??
??
Area = (4cos ?? + 2sin ?? ) (2cos ?? + 4sin ?? )
= 8cos
2
?? + 16sin ?? cos ?? + 4sin ?? cos ?? + 8sin
2
??
= 8 + 20 sin ?? cos ??
= 8 + 10 sin2 ?? ?@ Max Area = 8 + 10 = 18 (sin2 ?? ?@?] ?@?Q?I ?@ ?? ?@?] ?@ ?T?U?? ?@ (a + b)
2
= (4cos ?? + 2sin ?? ?@ + 2cos ?? + 4sin ?? )
2
?@ = (6cos ?? + 6sin ?? )
2
?@ = 36 (sin ?? + cos ?? )
2
?@ ?]?@
2
36( 2) ?@ ?] ?@?W?R 3. Let two straight lines drawn from the origin
O intersect the line 3x + 4y = 12 at the points P and
Q such that ?d OPQ is an isosceles triangle and
?? POQ = 90°. If l = OP
2
+ PQ
2
+ QO
2
, then the
greatest integer less than or equal to l is :
(1) 44 (2) 48
(3) 46 (4) 42
Ans. (3)
Sol.
O
?? ?@ P(rcos ?? , rsin ?? )
Q(rcos(90+???I , rsin(90+ ?? ) = (–rsin ???L rcos ?? )
3x + 4y = 12
3(rcos ?? ) + 4(rsin ?? ) = 12
r(3cos ?? + 4sin ?? ) = 12 ...(1)
3(–rsin ?? ) + 4(rcos ?? ) = 12
r(–3sin ?? + 4cos ?? ) = 12 ...(2)
2 2
2 2
12 12
(3cos 4sin ) ( 3sin 4cos )
r r
?? ?? ?? ?? ?K ?] ?? ?K ?? ?K ?M ?? ?K ?? ?? ?? ?? ?? ?? ?? ?? ??
2
12
2 9 16
r
????
?]?K
????
????
2
2 144
25
r
?? ?] ?? ?@ 288 = 25r
2
?@ ?? ?@ 2
288
r
25
?] ?@ ?@ 12
2 r
5
????
???]
????
????
?@ ?@ ?? = OP
2
+ PQ
2
+ QO
2
?@ ???@ = r
2
+ r
2
?@ + r
2
(cos ?? + sin ?? )
2
+ r
2
(sin ?? + cos ?? )
2
= 2r
2
+ r
2
(1 + sin2 ?? + 1 – 2sin2 ?? )
= 2r
2
+ 2r
2
= 4r
2
1152 288
4 46.08
25 25
????
?] ?] ?] ????
????
[ ?? ] = 46
4. If y = y(x) is the solution of the differential
equation
dy
dx
+ 2y = sin (2x), y(0) =
3
4
, then
y
8
?? ????
????
????
is equal to :
(1) e
– ?? /8
(2) e
– ?? /4
(3) e
?? /4
(4) e
?? /8
Ans. (2 )
Sol.
dy
2y sin 2x
dx
?K?] ,
3
y(0)
4
?]
I.F =
2dx
e
?? = e
2x
2x 2x
y.e e sin2xdx ?] ??
2x
2x
e (2sin 2x 2cos2x)
y.e C
4 4
?M ?]?K
?K
x = 0, y =
3
4
??
3 1(0 2)
.1 C
4 8
?M ?]?K
3 1
C
4 4
?] ?M ?K
1 = C
2x
2sin 2x 2cos2x
y 1.e
8
?M ?M ?]?K
x
8
?? ?] ,
2
8
1
y 2sin 2cos e
8 4 4
?? ????
?M ????
????
???? ????
?] ?M ?K ????
????
4
y 0 e
?? ?M ?]?K
5. For the function
f(x) = sinx + 3x –
2
?? (x
2
+ x), where x ?? 0,
2
?? ????
????
????
,
consider the following two statements :
(I) f is increasing in 0,
2
?? ????
????
????
.
(II) f ?? is decreasing in 0,
2
?? ????
????
????
.
Between the above two statements,
(1) only (I) is true.
(2) only (II) is true.
(3) neither (I) nor (II) is true.
(4) both (I) and (II) are true.
Page 3
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Friday 05
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let d be the distance of the point of intersection of
the lines
x 6 y z 1
3 2 1
?K?K
?]?] and
x 7 y 9 z 4
4 3 2
?M ?M ?M ?]?] from the point (7, 8, 9). Then
d
2
+ 6 is equal to :
(1) 72 (2) 69
(3) 75 (4) 78
Ans. (3)
Sol.
x 6 y z 1
3 2 1
?K?K
?] ?] ?] ?? …(1)
x = 3 ?? – 6, y = 2 ?? , z = ?? – 1
x 7 y 9 z 4
µ
4 3 2
?M ?M ?M ?] ?] ?] …(2)
x = 4µ + 7, y = 3µ + 9, z = 2µ + 4
3 ?? – 6 = 4µ + 7 ?? 3 ?? – 4µ = 13 …(3) × 2
2 ?? = 3µ + 9 ?? 2 ?? – 3µ = 9 …(4) × 3
6 ?? – 8µ = 26
6 ?? – 9µ = 27
– + – .
µ = –1
?? 3 ?? – 4(–1) = 13
3 ?? = 9
?? = 3
int. point (3, 6, 2) ; (7, 8, 9)
d
2
= 16 + 4 + 49 = 69
Ans. d
2
+ 6 = 69 + 6 = 75
2. Let a rectangle ABCD of sides 2 and 4 be inscribed
in another rectangle PQRS such that the vertices of
the rectangle ABCD lie on the sides of the
rectangle PQRS. Let a and b be the sides of the
rectangle PQRS when its area is maximum. Then
(a + b)
2
is equal to :
(1) 72 (2) 60
(3) 80 (4) 64
Ans. (1 )
Sol.
2cos(90– ?? )
P
B
Q
4
4
R
S
A
2 2
4cos(90– ?? )
2sin(90– ?? )
D
90– ??
??
??
Area = (4cos ?? + 2sin ?? ) (2cos ?? + 4sin ?? )
= 8cos
2
?? + 16sin ?? cos ?? + 4sin ?? cos ?? + 8sin
2
??
= 8 + 20 sin ?? cos ??
= 8 + 10 sin2 ?? ?@ Max Area = 8 + 10 = 18 (sin2 ?? ?@?] ?@?Q?I ?@ ?? ?@?] ?@ ?T?U?? ?@ (a + b)
2
= (4cos ?? + 2sin ?? ?@ + 2cos ?? + 4sin ?? )
2
?@ = (6cos ?? + 6sin ?? )
2
?@ = 36 (sin ?? + cos ?? )
2
?@ ?]?@
2
36( 2) ?@ ?] ?@?W?R 3. Let two straight lines drawn from the origin
O intersect the line 3x + 4y = 12 at the points P and
Q such that ?d OPQ is an isosceles triangle and
?? POQ = 90°. If l = OP
2
+ PQ
2
+ QO
2
, then the
greatest integer less than or equal to l is :
(1) 44 (2) 48
(3) 46 (4) 42
Ans. (3)
Sol.
O
?? ?@ P(rcos ?? , rsin ?? )
Q(rcos(90+???I , rsin(90+ ?? ) = (–rsin ???L rcos ?? )
3x + 4y = 12
3(rcos ?? ) + 4(rsin ?? ) = 12
r(3cos ?? + 4sin ?? ) = 12 ...(1)
3(–rsin ?? ) + 4(rcos ?? ) = 12
r(–3sin ?? + 4cos ?? ) = 12 ...(2)
2 2
2 2
12 12
(3cos 4sin ) ( 3sin 4cos )
r r
?? ?? ?? ?? ?K ?] ?? ?K ?? ?K ?M ?? ?K ?? ?? ?? ?? ?? ?? ?? ?? ??
2
12
2 9 16
r
????
?]?K
????
????
2
2 144
25
r
?? ?] ?? ?@ 288 = 25r
2
?@ ?? ?@ 2
288
r
25
?] ?@ ?@ 12
2 r
5
????
???]
????
????
?@ ?@ ?? = OP
2
+ PQ
2
+ QO
2
?@ ???@ = r
2
+ r
2
?@ + r
2
(cos ?? + sin ?? )
2
+ r
2
(sin ?? + cos ?? )
2
= 2r
2
+ r
2
(1 + sin2 ?? + 1 – 2sin2 ?? )
= 2r
2
+ 2r
2
= 4r
2
1152 288
4 46.08
25 25
????
?] ?] ?] ????
????
[ ?? ] = 46
4. If y = y(x) is the solution of the differential
equation
dy
dx
+ 2y = sin (2x), y(0) =
3
4
, then
y
8
?? ????
????
????
is equal to :
(1) e
– ?? /8
(2) e
– ?? /4
(3) e
?? /4
(4) e
?? /8
Ans. (2 )
Sol.
dy
2y sin 2x
dx
?K?] ,
3
y(0)
4
?]
I.F =
2dx
e
?? = e
2x
2x 2x
y.e e sin2xdx ?] ??
2x
2x
e (2sin 2x 2cos2x)
y.e C
4 4
?M ?]?K
?K
x = 0, y =
3
4
??
3 1(0 2)
.1 C
4 8
?M ?]?K
3 1
C
4 4
?] ?M ?K
1 = C
2x
2sin 2x 2cos2x
y 1.e
8
?M ?M ?]?K
x
8
?? ?] ,
2
8
1
y 2sin 2cos e
8 4 4
?? ????
?M ????
????
???? ????
?] ?M ?K ????
????
4
y 0 e
?? ?M ?]?K
5. For the function
f(x) = sinx + 3x –
2
?? (x
2
+ x), where x ?? 0,
2
?? ????
????
????
,
consider the following two statements :
(I) f is increasing in 0,
2
?? ????
????
????
.
(II) f ?? is decreasing in 0,
2
?? ????
????
????
.
Between the above two statements,
(1) only (I) is true.
(2) only (II) is true.
(3) neither (I) nor (II) is true.
(4) both (I) and (II) are true.
Ans. (4)
Sol. f(x) = sinx + 3x –
2
?? (x
2
+ x) x 0,
2
?? ????
?? ????
????
f ?? (x) = cosx + 3 –
2
?? (2x + 1) > 0 f(x) ??
f ?? (x) = –sinx + 0 –
2
?? (2)
= –sinx –
4
?? < 0 f ?? (x) ??
0 < x <
2
??
??
?H ?I 1 1 1
2
0 2x
?K ?K?K
?M ?\ ?\ ?? ??
3 3 3
2 2 2
(2x 1) ( 1)
?K ?K ?K ?M ?M ?^ ?K ?^ ?M ?? ?K ?? ?? ??
( ve) ( ve)
2 2 2
3 3 (2x 1) 3 ( 1)
?K?K
?M ?^ ?M ?K ?^ ?M ?? ?K ?? ?? ??
6. If the system of equations
11x + y + ?? z = –5
2x + 3y + 5z = 3
8x – 19y – 39z = µ
has infinitely many solutions, then ?? 4
– µ is equal
to :
(1) 49 (2) 45
(3) 47 (4) 51
Ans. (3)
Sol. 11x + y + ?? z = –5
2x + 3y + 5z = 3
8x – 19y – 39z = µ
for infinite sol.
11 1
D 2 3 5 0
8 19 39
?? ?]?]
?M?M
?? 11(–117 + 95) – 1(–78 – 40) + ?? (–38 – 24)
?? 11(–22) + 118 – ?? (62) = 0
?? 62 ?? = 118 – 242
??
124
2
62
?M ?? ?] ?] ?M
1
5 1 2
D 3 3 5 0
µ 19 39
?M?M
?]?]
?M?M
?? –5(–117 + 95) – 1(–117 – 5µ) – 2(–57 – 3µ) = 0
?? –5(–22) + 117 + 5µ + 114 + 6µ = 0
?? 11µ = –110 – 231 = –341
?? µ = –31
?? 4
– µ = (–2)
4
– (–31) = 16 + 31 = 47
7. Let A = {1, 3, 7, 9, 11} and B = {2, 4, 5, 7, 8, 10, 12}.
Then the total number of one-one maps
f : A ?? B, such that f (1) + f(3) = 14, is :
(1) 180 (2) 120
(3) 480 (4) 240
Ans. (4)
Sol.
1
3
7
9
11
(5)
2
(7)
12
4
5
7
8
10
A = {1, 3, 7, 9, 11}
B = {2, 4, 5, 7, 8, 10, 12}
f(1) + f(3) = 14
(i) 2 + 12
(ii) 4 + 10
2 × (2 × 5 × 4 × 3) = 240
8. If the function
3
sin3x sin x cos3x
f(x)
x
?K ?? ?M ?? ?] ,
x ?? R, is continuous at x = 0, then f(0) is equal to :
(1) 2 (2) –2
(3) 4 (4) –4
Ans. (4)
Sol.
3
sin3x sin x cos3x
f(x)
x
?K ?? ?M ?? ?]
is continuous at x = 0
3 3 2
3
x 0
(3x) x (3x)
3x ... x ... 1 ...
3 3 2
lim f(0)
x
?? ????????
?M ?K ?K ?? ?M ?? ?M ?M ????????
???? ????
?]?]
Page 4
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Friday 05
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let d be the distance of the point of intersection of
the lines
x 6 y z 1
3 2 1
?K?K
?]?] and
x 7 y 9 z 4
4 3 2
?M ?M ?M ?]?] from the point (7, 8, 9). Then
d
2
+ 6 is equal to :
(1) 72 (2) 69
(3) 75 (4) 78
Ans. (3)
Sol.
x 6 y z 1
3 2 1
?K?K
?] ?] ?] ?? …(1)
x = 3 ?? – 6, y = 2 ?? , z = ?? – 1
x 7 y 9 z 4
µ
4 3 2
?M ?M ?M ?] ?] ?] …(2)
x = 4µ + 7, y = 3µ + 9, z = 2µ + 4
3 ?? – 6 = 4µ + 7 ?? 3 ?? – 4µ = 13 …(3) × 2
2 ?? = 3µ + 9 ?? 2 ?? – 3µ = 9 …(4) × 3
6 ?? – 8µ = 26
6 ?? – 9µ = 27
– + – .
µ = –1
?? 3 ?? – 4(–1) = 13
3 ?? = 9
?? = 3
int. point (3, 6, 2) ; (7, 8, 9)
d
2
= 16 + 4 + 49 = 69
Ans. d
2
+ 6 = 69 + 6 = 75
2. Let a rectangle ABCD of sides 2 and 4 be inscribed
in another rectangle PQRS such that the vertices of
the rectangle ABCD lie on the sides of the
rectangle PQRS. Let a and b be the sides of the
rectangle PQRS when its area is maximum. Then
(a + b)
2
is equal to :
(1) 72 (2) 60
(3) 80 (4) 64
Ans. (1 )
Sol.
2cos(90– ?? )
P
B
Q
4
4
R
S
A
2 2
4cos(90– ?? )
2sin(90– ?? )
D
90– ??
??
??
Area = (4cos ?? + 2sin ?? ) (2cos ?? + 4sin ?? )
= 8cos
2
?? + 16sin ?? cos ?? + 4sin ?? cos ?? + 8sin
2
??
= 8 + 20 sin ?? cos ??
= 8 + 10 sin2 ?? ?@ Max Area = 8 + 10 = 18 (sin2 ?? ?@?] ?@?Q?I ?@ ?? ?@?] ?@ ?T?U?? ?@ (a + b)
2
= (4cos ?? + 2sin ?? ?@ + 2cos ?? + 4sin ?? )
2
?@ = (6cos ?? + 6sin ?? )
2
?@ = 36 (sin ?? + cos ?? )
2
?@ ?]?@
2
36( 2) ?@ ?] ?@?W?R 3. Let two straight lines drawn from the origin
O intersect the line 3x + 4y = 12 at the points P and
Q such that ?d OPQ is an isosceles triangle and
?? POQ = 90°. If l = OP
2
+ PQ
2
+ QO
2
, then the
greatest integer less than or equal to l is :
(1) 44 (2) 48
(3) 46 (4) 42
Ans. (3)
Sol.
O
?? ?@ P(rcos ?? , rsin ?? )
Q(rcos(90+???I , rsin(90+ ?? ) = (–rsin ???L rcos ?? )
3x + 4y = 12
3(rcos ?? ) + 4(rsin ?? ) = 12
r(3cos ?? + 4sin ?? ) = 12 ...(1)
3(–rsin ?? ) + 4(rcos ?? ) = 12
r(–3sin ?? + 4cos ?? ) = 12 ...(2)
2 2
2 2
12 12
(3cos 4sin ) ( 3sin 4cos )
r r
?? ?? ?? ?? ?K ?] ?? ?K ?? ?K ?M ?? ?K ?? ?? ?? ?? ?? ?? ?? ?? ??
2
12
2 9 16
r
????
?]?K
????
????
2
2 144
25
r
?? ?] ?? ?@ 288 = 25r
2
?@ ?? ?@ 2
288
r
25
?] ?@ ?@ 12
2 r
5
????
???]
????
????
?@ ?@ ?? = OP
2
+ PQ
2
+ QO
2
?@ ???@ = r
2
+ r
2
?@ + r
2
(cos ?? + sin ?? )
2
+ r
2
(sin ?? + cos ?? )
2
= 2r
2
+ r
2
(1 + sin2 ?? + 1 – 2sin2 ?? )
= 2r
2
+ 2r
2
= 4r
2
1152 288
4 46.08
25 25
????
?] ?] ?] ????
????
[ ?? ] = 46
4. If y = y(x) is the solution of the differential
equation
dy
dx
+ 2y = sin (2x), y(0) =
3
4
, then
y
8
?? ????
????
????
is equal to :
(1) e
– ?? /8
(2) e
– ?? /4
(3) e
?? /4
(4) e
?? /8
Ans. (2 )
Sol.
dy
2y sin 2x
dx
?K?] ,
3
y(0)
4
?]
I.F =
2dx
e
?? = e
2x
2x 2x
y.e e sin2xdx ?] ??
2x
2x
e (2sin 2x 2cos2x)
y.e C
4 4
?M ?]?K
?K
x = 0, y =
3
4
??
3 1(0 2)
.1 C
4 8
?M ?]?K
3 1
C
4 4
?] ?M ?K
1 = C
2x
2sin 2x 2cos2x
y 1.e
8
?M ?M ?]?K
x
8
?? ?] ,
2
8
1
y 2sin 2cos e
8 4 4
?? ????
?M ????
????
???? ????
?] ?M ?K ????
????
4
y 0 e
?? ?M ?]?K
5. For the function
f(x) = sinx + 3x –
2
?? (x
2
+ x), where x ?? 0,
2
?? ????
????
????
,
consider the following two statements :
(I) f is increasing in 0,
2
?? ????
????
????
.
(II) f ?? is decreasing in 0,
2
?? ????
????
????
.
Between the above two statements,
(1) only (I) is true.
(2) only (II) is true.
(3) neither (I) nor (II) is true.
(4) both (I) and (II) are true.
Ans. (4)
Sol. f(x) = sinx + 3x –
2
?? (x
2
+ x) x 0,
2
?? ????
?? ????
????
f ?? (x) = cosx + 3 –
2
?? (2x + 1) > 0 f(x) ??
f ?? (x) = –sinx + 0 –
2
?? (2)
= –sinx –
4
?? < 0 f ?? (x) ??
0 < x <
2
??
??
?H ?I 1 1 1
2
0 2x
?K ?K?K
?M ?\ ?\ ?? ??
3 3 3
2 2 2
(2x 1) ( 1)
?K ?K ?K ?M ?M ?^ ?K ?^ ?M ?? ?K ?? ?? ??
( ve) ( ve)
2 2 2
3 3 (2x 1) 3 ( 1)
?K?K
?M ?^ ?M ?K ?^ ?M ?? ?K ?? ?? ??
6. If the system of equations
11x + y + ?? z = –5
2x + 3y + 5z = 3
8x – 19y – 39z = µ
has infinitely many solutions, then ?? 4
– µ is equal
to :
(1) 49 (2) 45
(3) 47 (4) 51
Ans. (3)
Sol. 11x + y + ?? z = –5
2x + 3y + 5z = 3
8x – 19y – 39z = µ
for infinite sol.
11 1
D 2 3 5 0
8 19 39
?? ?]?]
?M?M
?? 11(–117 + 95) – 1(–78 – 40) + ?? (–38 – 24)
?? 11(–22) + 118 – ?? (62) = 0
?? 62 ?? = 118 – 242
??
124
2
62
?M ?? ?] ?] ?M
1
5 1 2
D 3 3 5 0
µ 19 39
?M?M
?]?]
?M?M
?? –5(–117 + 95) – 1(–117 – 5µ) – 2(–57 – 3µ) = 0
?? –5(–22) + 117 + 5µ + 114 + 6µ = 0
?? 11µ = –110 – 231 = –341
?? µ = –31
?? 4
– µ = (–2)
4
– (–31) = 16 + 31 = 47
7. Let A = {1, 3, 7, 9, 11} and B = {2, 4, 5, 7, 8, 10, 12}.
Then the total number of one-one maps
f : A ?? B, such that f (1) + f(3) = 14, is :
(1) 180 (2) 120
(3) 480 (4) 240
Ans. (4)
Sol.
1
3
7
9
11
(5)
2
(7)
12
4
5
7
8
10
A = {1, 3, 7, 9, 11}
B = {2, 4, 5, 7, 8, 10, 12}
f(1) + f(3) = 14
(i) 2 + 12
(ii) 4 + 10
2 × (2 × 5 × 4 × 3) = 240
8. If the function
3
sin3x sin x cos3x
f(x)
x
?K ?? ?M ?? ?] ,
x ?? R, is continuous at x = 0, then f(0) is equal to :
(1) 2 (2) –2
(3) 4 (4) –4
Ans. (4)
Sol.
3
sin3x sin x cos3x
f(x)
x
?K ?? ?M ?? ?]
is continuous at x = 0
3 3 2
3
x 0
(3x) x (3x)
3x ... x ... 1 ...
3 3 2
lim f(0)
x
?? ????????
?M ?K ?K ?? ?M ?? ?M ?M ????????
???? ????
?]?]
2
3
3
x 0
27 9 x
x(3 ) x ...
3 3 2
lim f(0)
x
?? ?M?? ?? ????
?M ?M ?? ?K ?K ?? ?K ?K ????
????
?]?]
for exist
?? = 0, 3+ ?? = 0,
27
f(0)
3 3
?? ?M ?M ?]
?? ?@ = –3,
27 ( 3)
f(0)
6 6
?M ?M ?M ?]
27 3
f(0) 4
6
?M?K
?] ?] ?M
9. The integral
4
0
136sin x
dx
3sin x 5cosx
?? ?K ?? is equal to :
(1) 3 ?? – 50 log
e
2 + 20 log
e
5
(2) 3 ?? – 25 log
e
2 + 10 log
e
5
(3) 3 ?? – 10 log
e ?H ?I 2 2 + 10 log
e
5
(4) 3 ?? – 30 log
e
2 + 20 log
e
5
Ans. (1)
Sol.
/4
0
136sin x
I dx
3sin x 5cosx
?? ?] ?K ??
136sinx = A(3sinx + 5cosx) + B(3cosx – 5sinx)
136 = 3A – 5B …(1)
0 = 5A + 3B …(2)
3B = –5A ??
5
B A
3
?]?M
5
136 3A 5 A
3
????
?] ?M ?M????
????
25
136 3A A
3
?]?K
34A
136
3
?]
??
136 3
A 12
34
?? ?]?]
5
B (12) –20
3
?M?]?]
/4 /4
0 0
A(3sin x 5cosx) B(3cosx 5sin x)
I
3sin x 5cosx 3sin x 5cosx
????
?K?M
?]?K
?K?K
????
?H ?I ?H ?I /4 /4
0 0
A x B n 3sin x 5cosx
?? ?????? ?] ?K ?K????
?H ?I 3 5
12 20 n n 0 5
4
2 2
?? ???? ????
?] ?M ?K ?M ?K ???? ????
???? ????
3 20 n4 2 20 n5 ?] ?? ?M ?K
5
3 20 n2 20 n5
2
?] ?? ?M ?? ?K
3 50 n2 20 n5 ?] ?? ?M ?K
10. The coefficients a, b, c in the quadratic equation
ax
2
+ bx + c = 0 are chosen from the set
{1, 2, 3, 4, 5, 6, 7, 8}. The probability of this
equation having repeated roots is :
(1)
3
256
(2)
1
128
(3)
1
64
(4)
3
128
Ans. (3)
Sol. ax
2
+ bx + c = 0
a, b, c ?? {1, 2, 3, 4, 5, 6,7, 8}
Repeated roots D = 0
?? b
2
– 4ac = 0 ?? b
2
= 4ac
Prob =
8 1
8 8 8 64
?] ????
?? (a, b, c)
(1, 2, 1) ; (2, 4, 2) ; (1, 4, 4) ; (4, 4, 1) ; (3, 6, 3) ;
(2, 8, 8) ; (8, 8, 2) ; (4, 8, 4)
8 case
Page 5
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Friday 05
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let d be the distance of the point of intersection of
the lines
x 6 y z 1
3 2 1
?K?K
?]?] and
x 7 y 9 z 4
4 3 2
?M ?M ?M ?]?] from the point (7, 8, 9). Then
d
2
+ 6 is equal to :
(1) 72 (2) 69
(3) 75 (4) 78
Ans. (3)
Sol.
x 6 y z 1
3 2 1
?K?K
?] ?] ?] ?? …(1)
x = 3 ?? – 6, y = 2 ?? , z = ?? – 1
x 7 y 9 z 4
µ
4 3 2
?M ?M ?M ?] ?] ?] …(2)
x = 4µ + 7, y = 3µ + 9, z = 2µ + 4
3 ?? – 6 = 4µ + 7 ?? 3 ?? – 4µ = 13 …(3) × 2
2 ?? = 3µ + 9 ?? 2 ?? – 3µ = 9 …(4) × 3
6 ?? – 8µ = 26
6 ?? – 9µ = 27
– + – .
µ = –1
?? 3 ?? – 4(–1) = 13
3 ?? = 9
?? = 3
int. point (3, 6, 2) ; (7, 8, 9)
d
2
= 16 + 4 + 49 = 69
Ans. d
2
+ 6 = 69 + 6 = 75
2. Let a rectangle ABCD of sides 2 and 4 be inscribed
in another rectangle PQRS such that the vertices of
the rectangle ABCD lie on the sides of the
rectangle PQRS. Let a and b be the sides of the
rectangle PQRS when its area is maximum. Then
(a + b)
2
is equal to :
(1) 72 (2) 60
(3) 80 (4) 64
Ans. (1 )
Sol.
2cos(90– ?? )
P
B
Q
4
4
R
S
A
2 2
4cos(90– ?? )
2sin(90– ?? )
D
90– ??
??
??
Area = (4cos ?? + 2sin ?? ) (2cos ?? + 4sin ?? )
= 8cos
2
?? + 16sin ?? cos ?? + 4sin ?? cos ?? + 8sin
2
??
= 8 + 20 sin ?? cos ??
= 8 + 10 sin2 ?? ?@ Max Area = 8 + 10 = 18 (sin2 ?? ?@?] ?@?Q?I ?@ ?? ?@?] ?@ ?T?U?? ?@ (a + b)
2
= (4cos ?? + 2sin ?? ?@ + 2cos ?? + 4sin ?? )
2
?@ = (6cos ?? + 6sin ?? )
2
?@ = 36 (sin ?? + cos ?? )
2
?@ ?]?@
2
36( 2) ?@ ?] ?@?W?R 3. Let two straight lines drawn from the origin
O intersect the line 3x + 4y = 12 at the points P and
Q such that ?d OPQ is an isosceles triangle and
?? POQ = 90°. If l = OP
2
+ PQ
2
+ QO
2
, then the
greatest integer less than or equal to l is :
(1) 44 (2) 48
(3) 46 (4) 42
Ans. (3)
Sol.
O
?? ?@ P(rcos ?? , rsin ?? )
Q(rcos(90+???I , rsin(90+ ?? ) = (–rsin ???L rcos ?? )
3x + 4y = 12
3(rcos ?? ) + 4(rsin ?? ) = 12
r(3cos ?? + 4sin ?? ) = 12 ...(1)
3(–rsin ?? ) + 4(rcos ?? ) = 12
r(–3sin ?? + 4cos ?? ) = 12 ...(2)
2 2
2 2
12 12
(3cos 4sin ) ( 3sin 4cos )
r r
?? ?? ?? ?? ?K ?] ?? ?K ?? ?K ?M ?? ?K ?? ?? ?? ?? ?? ?? ?? ?? ??
2
12
2 9 16
r
????
?]?K
????
????
2
2 144
25
r
?? ?] ?? ?@ 288 = 25r
2
?@ ?? ?@ 2
288
r
25
?] ?@ ?@ 12
2 r
5
????
???]
????
????
?@ ?@ ?? = OP
2
+ PQ
2
+ QO
2
?@ ???@ = r
2
+ r
2
?@ + r
2
(cos ?? + sin ?? )
2
+ r
2
(sin ?? + cos ?? )
2
= 2r
2
+ r
2
(1 + sin2 ?? + 1 – 2sin2 ?? )
= 2r
2
+ 2r
2
= 4r
2
1152 288
4 46.08
25 25
????
?] ?] ?] ????
????
[ ?? ] = 46
4. If y = y(x) is the solution of the differential
equation
dy
dx
+ 2y = sin (2x), y(0) =
3
4
, then
y
8
?? ????
????
????
is equal to :
(1) e
– ?? /8
(2) e
– ?? /4
(3) e
?? /4
(4) e
?? /8
Ans. (2 )
Sol.
dy
2y sin 2x
dx
?K?] ,
3
y(0)
4
?]
I.F =
2dx
e
?? = e
2x
2x 2x
y.e e sin2xdx ?] ??
2x
2x
e (2sin 2x 2cos2x)
y.e C
4 4
?M ?]?K
?K
x = 0, y =
3
4
??
3 1(0 2)
.1 C
4 8
?M ?]?K
3 1
C
4 4
?] ?M ?K
1 = C
2x
2sin 2x 2cos2x
y 1.e
8
?M ?M ?]?K
x
8
?? ?] ,
2
8
1
y 2sin 2cos e
8 4 4
?? ????
?M ????
????
???? ????
?] ?M ?K ????
????
4
y 0 e
?? ?M ?]?K
5. For the function
f(x) = sinx + 3x –
2
?? (x
2
+ x), where x ?? 0,
2
?? ????
????
????
,
consider the following two statements :
(I) f is increasing in 0,
2
?? ????
????
????
.
(II) f ?? is decreasing in 0,
2
?? ????
????
????
.
Between the above two statements,
(1) only (I) is true.
(2) only (II) is true.
(3) neither (I) nor (II) is true.
(4) both (I) and (II) are true.
Ans. (4)
Sol. f(x) = sinx + 3x –
2
?? (x
2
+ x) x 0,
2
?? ????
?? ????
????
f ?? (x) = cosx + 3 –
2
?? (2x + 1) > 0 f(x) ??
f ?? (x) = –sinx + 0 –
2
?? (2)
= –sinx –
4
?? < 0 f ?? (x) ??
0 < x <
2
??
??
?H ?I 1 1 1
2
0 2x
?K ?K?K
?M ?\ ?\ ?? ??
3 3 3
2 2 2
(2x 1) ( 1)
?K ?K ?K ?M ?M ?^ ?K ?^ ?M ?? ?K ?? ?? ??
( ve) ( ve)
2 2 2
3 3 (2x 1) 3 ( 1)
?K?K
?M ?^ ?M ?K ?^ ?M ?? ?K ?? ?? ??
6. If the system of equations
11x + y + ?? z = –5
2x + 3y + 5z = 3
8x – 19y – 39z = µ
has infinitely many solutions, then ?? 4
– µ is equal
to :
(1) 49 (2) 45
(3) 47 (4) 51
Ans. (3)
Sol. 11x + y + ?? z = –5
2x + 3y + 5z = 3
8x – 19y – 39z = µ
for infinite sol.
11 1
D 2 3 5 0
8 19 39
?? ?]?]
?M?M
?? 11(–117 + 95) – 1(–78 – 40) + ?? (–38 – 24)
?? 11(–22) + 118 – ?? (62) = 0
?? 62 ?? = 118 – 242
??
124
2
62
?M ?? ?] ?] ?M
1
5 1 2
D 3 3 5 0
µ 19 39
?M?M
?]?]
?M?M
?? –5(–117 + 95) – 1(–117 – 5µ) – 2(–57 – 3µ) = 0
?? –5(–22) + 117 + 5µ + 114 + 6µ = 0
?? 11µ = –110 – 231 = –341
?? µ = –31
?? 4
– µ = (–2)
4
– (–31) = 16 + 31 = 47
7. Let A = {1, 3, 7, 9, 11} and B = {2, 4, 5, 7, 8, 10, 12}.
Then the total number of one-one maps
f : A ?? B, such that f (1) + f(3) = 14, is :
(1) 180 (2) 120
(3) 480 (4) 240
Ans. (4)
Sol.
1
3
7
9
11
(5)
2
(7)
12
4
5
7
8
10
A = {1, 3, 7, 9, 11}
B = {2, 4, 5, 7, 8, 10, 12}
f(1) + f(3) = 14
(i) 2 + 12
(ii) 4 + 10
2 × (2 × 5 × 4 × 3) = 240
8. If the function
3
sin3x sin x cos3x
f(x)
x
?K ?? ?M ?? ?] ,
x ?? R, is continuous at x = 0, then f(0) is equal to :
(1) 2 (2) –2
(3) 4 (4) –4
Ans. (4)
Sol.
3
sin3x sin x cos3x
f(x)
x
?K ?? ?M ?? ?]
is continuous at x = 0
3 3 2
3
x 0
(3x) x (3x)
3x ... x ... 1 ...
3 3 2
lim f(0)
x
?? ????????
?M ?K ?K ?? ?M ?? ?M ?M ????????
???? ????
?]?]
2
3
3
x 0
27 9 x
x(3 ) x ...
3 3 2
lim f(0)
x
?? ?M?? ?? ????
?M ?M ?? ?K ?K ?? ?K ?K ????
????
?]?]
for exist
?? = 0, 3+ ?? = 0,
27
f(0)
3 3
?? ?M ?M ?]
?? ?@ = –3,
27 ( 3)
f(0)
6 6
?M ?M ?M ?]
27 3
f(0) 4
6
?M?K
?] ?] ?M
9. The integral
4
0
136sin x
dx
3sin x 5cosx
?? ?K ?? is equal to :
(1) 3 ?? – 50 log
e
2 + 20 log
e
5
(2) 3 ?? – 25 log
e
2 + 10 log
e
5
(3) 3 ?? – 10 log
e ?H ?I 2 2 + 10 log
e
5
(4) 3 ?? – 30 log
e
2 + 20 log
e
5
Ans. (1)
Sol.
/4
0
136sin x
I dx
3sin x 5cosx
?? ?] ?K ??
136sinx = A(3sinx + 5cosx) + B(3cosx – 5sinx)
136 = 3A – 5B …(1)
0 = 5A + 3B …(2)
3B = –5A ??
5
B A
3
?]?M
5
136 3A 5 A
3
????
?] ?M ?M????
????
25
136 3A A
3
?]?K
34A
136
3
?]
??
136 3
A 12
34
?? ?]?]
5
B (12) –20
3
?M?]?]
/4 /4
0 0
A(3sin x 5cosx) B(3cosx 5sin x)
I
3sin x 5cosx 3sin x 5cosx
????
?K?M
?]?K
?K?K
????
?H ?I ?H ?I /4 /4
0 0
A x B n 3sin x 5cosx
?? ?????? ?] ?K ?K????
?H ?I 3 5
12 20 n n 0 5
4
2 2
?? ???? ????
?] ?M ?K ?M ?K ???? ????
???? ????
3 20 n4 2 20 n5 ?] ?? ?M ?K
5
3 20 n2 20 n5
2
?] ?? ?M ?? ?K
3 50 n2 20 n5 ?] ?? ?M ?K
10. The coefficients a, b, c in the quadratic equation
ax
2
+ bx + c = 0 are chosen from the set
{1, 2, 3, 4, 5, 6, 7, 8}. The probability of this
equation having repeated roots is :
(1)
3
256
(2)
1
128
(3)
1
64
(4)
3
128
Ans. (3)
Sol. ax
2
+ bx + c = 0
a, b, c ?? {1, 2, 3, 4, 5, 6,7, 8}
Repeated roots D = 0
?? b
2
– 4ac = 0 ?? b
2
= 4ac
Prob =
8 1
8 8 8 64
?] ????
?? (a, b, c)
(1, 2, 1) ; (2, 4, 2) ; (1, 4, 4) ; (4, 4, 1) ; (3, 6, 3) ;
(2, 8, 8) ; (8, 8, 2) ; (4, 8, 4)
8 case
11. Let A and B be two square matrices of order 3
such that |A| = 3 and |B| = 2.
Then |A
T
A(adj(2A))
–1
(adj(4B))(adj(AB))
–1
AA
T
|
is equal to :
(1) 64 (2) 81
(3) 32 (4) 108
Ans. (1)
Sol. |A| = 3, |B| = 2
|A
T
A(adj(2A))
–1
(adj(4B)) (adj(AB))
–1
AA
T
|
= 3×3×|(adj(2A)
–1
| × |adj(4B)| × |(adj(AB))
–1
|×3×3
?? ?? ??
6
6 2
1
adj(2A)
1
2 adjA
1
2 · 3
?] ?]
2
12
× 2
2
2 2
1
adj(AB)
1
adjB·adjA
1
2 · 3
?] ?]
4 12 2
6 2 2 2
1 1
3 · ·2 ·2 · 64
2 · 3 2 · 3
?]?]
12. Let a circle C of radius 1 and closer to the origin be
such that the lines passing through the point (3, 2)
and parallel to the coordinate axes touch it. Then
the shortest distance of the circle C from the point
(5, 5) is :
(1) 2 2 (2) 5
(3) 4 2 (4) 4
Ans. (4)
Sol.
O
R
R
P(3, 2)
Q(5, 5)
C(2, 1)
Coordinates of the centre will be (2, 1)
Equation of circle will be
(x – 2)
2
+ (y – 1)
2
= 1
QC =
2 2
(5 2) (5 1) ?M ?K ?M
QC = 5
shortest distance
= RQ = CQ – CR
= 5 – 1
= 4
13. Let the line 2x + 3y – k = 0, k > 0, intersect the
x-axis and y-axis at the points A and B,
respectively. If the equation of the circle having the
line segment AB as a diameter is x
2
+ y
2
– 3x – 2y = 0
and the length of the latus rectum of the ellipse
x
2
+ 9y
2
= k
2
is
m
n
, where m and n are coprime,
then 2m + n is equal to
(1) 10 (2) 11
(3) 13 (4) 12
Ans. (2)
Sol. Centre of the circle =
3
,1
2
????
????
????
Equation of diameter = 2x + 3y – k = 0
3
2 3(1) – k 0
2
????
?K?]
????
????
?? k = 6
Now, Equation of ellipse becomes
x
2
+ 9y
2
= 36
2 2
2 2
x y
1
6 2
?K?]
Read More