Page 1
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Thursday 04
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let ƒ : R ?? R be a function given by
?H ?I 2
1 cos2x
, x 0
x
ƒ x , x 0
1 cosx
, x 0
x
?? ?M ?\ ?? ?? ?? ?] ?? ?] ?? ?? ???M
?? ?^ ?? ?? , where ?? , ?? ?? R. If
ƒ is continuous at x = 0, then ?? 2
+ ?? 2
is equal to :
(1) 48 (2) 12
(3) 3 (4) 6
Ans. (2)
Sol. ƒ(0
–
) =
2
2
x 0
2sin x
lim
x
?M ?? = 2 = ??
ƒ(0
+
) =
x 0
x
sin
2
lim 2 2
x
2
2
2
?K ?? ?? ?? ?? ?] ?] ?? ?? = 2 2
?? 2
+ ?? 2
= 4 + 8 = 12
2. Three urns A, B and C contain 7 red, 5 black;
5 red, 7 black and 6 red, 6 black balls, respectively.
One of the urn is selected at random and a ball is
drawn from it. If the ball drawn is black, then the
probability that it is drawn from urn A is :
(1)
4
17
(2)
5
18
(3)
7
18
(4)
5
16
Ans. (2)
Sol.
A
7R, 5B
B
5R, 7B
C
6R, 6B
P(B) =
1 5 1 7 1 6
. . .
3 12 3 12 3 12
?K?K
required probability =
1 5
.
5
3 12
1 5 7 6 18
.
3 12 12 12
?] ????
?K?K
????
????
3. The vertices of a triangle are A(–1, 3), B(–2, 2) and
C(3, –1). A new triangle is formed by shifting the sides
of the triangle by one unit inwards. Then the equation
of the side of the new triangle nearest to origin is :
(1) x – y –
?H ?I 2 2 ?K = 0
(2) –x + y –
?H ?I 2 2 ?M = 0
(3) x + y –
?H ?I 2 2 ?M = 0
(4) x + y +
?H ?I 2 2 ?M = 0
Ans. (3)
Sol.
C
(–2,2)
m = –1
(3, –1)
B
A
(–1,3)
equation of AC ?? x + y = 2
equation of line parallel to AC x + y = d
?M ?] d 2
1
2
d 2 2 ?]?M
eq
n
of new required line
x y 2 2 ?K ?] ?M 4. If the solution y = y(x) of the differential equation
(x
4
+ 2x
3
+ 3x
2
+ 2x + 2)dy – (2x
2
+ 2x + 3)dx = 0
satisfies y(–1) =
4
?? ?M , then y(0) is equal to :
(1)
12
?? ?M (2) 0
(3)
4
?? (4)
2
?? Ans. (3)
Page 2
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Thursday 04
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let ƒ : R ?? R be a function given by
?H ?I 2
1 cos2x
, x 0
x
ƒ x , x 0
1 cosx
, x 0
x
?? ?M ?\ ?? ?? ?? ?] ?? ?] ?? ?? ???M
?? ?^ ?? ?? , where ?? , ?? ?? R. If
ƒ is continuous at x = 0, then ?? 2
+ ?? 2
is equal to :
(1) 48 (2) 12
(3) 3 (4) 6
Ans. (2)
Sol. ƒ(0
–
) =
2
2
x 0
2sin x
lim
x
?M ?? = 2 = ??
ƒ(0
+
) =
x 0
x
sin
2
lim 2 2
x
2
2
2
?K ?? ?? ?? ?? ?] ?] ?? ?? = 2 2
?? 2
+ ?? 2
= 4 + 8 = 12
2. Three urns A, B and C contain 7 red, 5 black;
5 red, 7 black and 6 red, 6 black balls, respectively.
One of the urn is selected at random and a ball is
drawn from it. If the ball drawn is black, then the
probability that it is drawn from urn A is :
(1)
4
17
(2)
5
18
(3)
7
18
(4)
5
16
Ans. (2)
Sol.
A
7R, 5B
B
5R, 7B
C
6R, 6B
P(B) =
1 5 1 7 1 6
. . .
3 12 3 12 3 12
?K?K
required probability =
1 5
.
5
3 12
1 5 7 6 18
.
3 12 12 12
?] ????
?K?K
????
????
3. The vertices of a triangle are A(–1, 3), B(–2, 2) and
C(3, –1). A new triangle is formed by shifting the sides
of the triangle by one unit inwards. Then the equation
of the side of the new triangle nearest to origin is :
(1) x – y –
?H ?I 2 2 ?K = 0
(2) –x + y –
?H ?I 2 2 ?M = 0
(3) x + y –
?H ?I 2 2 ?M = 0
(4) x + y +
?H ?I 2 2 ?M = 0
Ans. (3)
Sol.
C
(–2,2)
m = –1
(3, –1)
B
A
(–1,3)
equation of AC ?? x + y = 2
equation of line parallel to AC x + y = d
?M ?] d 2
1
2
d 2 2 ?]?M
eq
n
of new required line
x y 2 2 ?K ?] ?M 4. If the solution y = y(x) of the differential equation
(x
4
+ 2x
3
+ 3x
2
+ 2x + 2)dy – (2x
2
+ 2x + 3)dx = 0
satisfies y(–1) =
4
?? ?M , then y(0) is equal to :
(1)
12
?? ?M (2) 0
(3)
4
?? (4)
2
?? Ans. (3)
Sol.
?H ?I 2
4 3 2
2x 2x 3
dy dx
x 2x 3x 2x 2
?K?K
?] ?K ?K ?K ?K ????
?H ?I ?H ?I ?H ?I 2
2 2
2x 2x 3
y dx
x 1 x 2x 2
?K?K
?] ?K ?K ?K ??
2 2
dx dx
y
x 2x 2 x 1
?]?K
?K ?K ?K ????
y = tan
–1
(x + 1) + tan
–1
x + C
y(–1) =
4
?M??
0 C
4 4
?M ?? ?? ?] ?M ?K ?? C = 0
?? y = tan
–1
(x + 1) + tan
–1
x
y(0) = tan
–1
1 =
4
??
5. Let the sum of the maximum and the minimum
values of the function f(x) =
2
2
2x 3x 8
2x 3x 8
?M?K
?K?K
be
m
n
,
where gcd(m, n) = 1. Then m + n is equal to :
(1) 182 (2) 217
(3) 195 (4) 201
Ans. (4)
Sol.
2
2
2x 3x 8
y
2x 3x 8
?M?K
?] ?K?K
x
2
(2y – 2) + x(3y + 3) + 8y – 8 = 0
use D ?? 0
(3y + 3)
2
– 4(2y – 2) (8y – 8) ?? 0
(11y – 5) (5y – 11) ?? 0
5 11
y ,
11 5
????
????
????
????
y = 1 is also included
6. One of the points of intersection of the curves
y = 1 + 3x – 2x
2
and y =
1
x
is
1
,2
2
????
????
????
. Let the area
of the region enclosed by these curves be
?H ?I 1
5 m
24
?K – nlog
e ?H ?I 1 5 ?K , where ?? , m, n ??
N. Then ?? + m + n is equal to
(1) 32 (2) 30
(3) 29 (4) 31
Ans. (2)
Sol.
1 5
2
2
1
2
1
A 1 3x 2x dx
x
?K????
?] ?K ?M ?M ????
????
??
1 5
2 3
2
1
2
3x 2x
A x n x
2 3
?K ????
?] ?K ?M ?M ????
????
2 3
1 5 3 1 5 2 1 5 1 5
A n
2 2 2 3 2 2
?? ?? ?? ?? ?? ?? ?K ?K ?K ?K ?] ?K ?M ?M ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
1 3 1 2 1 1
n
2 2 4 3 8 2
?? ?? ?? ?? ?? ?? ?M ?M ?K ?K ?? ?? ?? ?? ????
?? ?? ?? ?? ????
1 5 3 3 15 4 2
A 5 5
2 2 8 4 8 3 3
?] ?K ?K ?K ?K ?M ?M
?H ?I 1 3 1
n 1 5
2 8 12
?M ?M ?K ?M ?K
?H ?I 1 3 2 15 4 1
5 n 1 5
2 4 3 8 3 12
????
?] ?K ?M ?K ?M ?K ?M ?K ????
????
?H ?I ?] ?K ?M ?K 14 15
5 n 1 5
24 24
7. If the system of equations
?H ?I ?H ?I x 2 sin y 2 cos z 0 ?K ?? ?K ?? ?]
x + (cos ?? )y + (sin ?? )z = 0
x + (sin ?? )y – (cos ?? )z = 0
has a non-trivial solution, then 0,
2
?? ????
????
????
????
is equal to :
(1)
3
4
?? (2)
7
24
??
(3)
5
24
?? (4)
11
24
??
Ans. (3)
Page 3
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Thursday 04
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let ƒ : R ?? R be a function given by
?H ?I 2
1 cos2x
, x 0
x
ƒ x , x 0
1 cosx
, x 0
x
?? ?M ?\ ?? ?? ?? ?] ?? ?] ?? ?? ???M
?? ?^ ?? ?? , where ?? , ?? ?? R. If
ƒ is continuous at x = 0, then ?? 2
+ ?? 2
is equal to :
(1) 48 (2) 12
(3) 3 (4) 6
Ans. (2)
Sol. ƒ(0
–
) =
2
2
x 0
2sin x
lim
x
?M ?? = 2 = ??
ƒ(0
+
) =
x 0
x
sin
2
lim 2 2
x
2
2
2
?K ?? ?? ?? ?? ?] ?] ?? ?? = 2 2
?? 2
+ ?? 2
= 4 + 8 = 12
2. Three urns A, B and C contain 7 red, 5 black;
5 red, 7 black and 6 red, 6 black balls, respectively.
One of the urn is selected at random and a ball is
drawn from it. If the ball drawn is black, then the
probability that it is drawn from urn A is :
(1)
4
17
(2)
5
18
(3)
7
18
(4)
5
16
Ans. (2)
Sol.
A
7R, 5B
B
5R, 7B
C
6R, 6B
P(B) =
1 5 1 7 1 6
. . .
3 12 3 12 3 12
?K?K
required probability =
1 5
.
5
3 12
1 5 7 6 18
.
3 12 12 12
?] ????
?K?K
????
????
3. The vertices of a triangle are A(–1, 3), B(–2, 2) and
C(3, –1). A new triangle is formed by shifting the sides
of the triangle by one unit inwards. Then the equation
of the side of the new triangle nearest to origin is :
(1) x – y –
?H ?I 2 2 ?K = 0
(2) –x + y –
?H ?I 2 2 ?M = 0
(3) x + y –
?H ?I 2 2 ?M = 0
(4) x + y +
?H ?I 2 2 ?M = 0
Ans. (3)
Sol.
C
(–2,2)
m = –1
(3, –1)
B
A
(–1,3)
equation of AC ?? x + y = 2
equation of line parallel to AC x + y = d
?M ?] d 2
1
2
d 2 2 ?]?M
eq
n
of new required line
x y 2 2 ?K ?] ?M 4. If the solution y = y(x) of the differential equation
(x
4
+ 2x
3
+ 3x
2
+ 2x + 2)dy – (2x
2
+ 2x + 3)dx = 0
satisfies y(–1) =
4
?? ?M , then y(0) is equal to :
(1)
12
?? ?M (2) 0
(3)
4
?? (4)
2
?? Ans. (3)
Sol.
?H ?I 2
4 3 2
2x 2x 3
dy dx
x 2x 3x 2x 2
?K?K
?] ?K ?K ?K ?K ????
?H ?I ?H ?I ?H ?I 2
2 2
2x 2x 3
y dx
x 1 x 2x 2
?K?K
?] ?K ?K ?K ??
2 2
dx dx
y
x 2x 2 x 1
?]?K
?K ?K ?K ????
y = tan
–1
(x + 1) + tan
–1
x + C
y(–1) =
4
?M??
0 C
4 4
?M ?? ?? ?] ?M ?K ?? C = 0
?? y = tan
–1
(x + 1) + tan
–1
x
y(0) = tan
–1
1 =
4
??
5. Let the sum of the maximum and the minimum
values of the function f(x) =
2
2
2x 3x 8
2x 3x 8
?M?K
?K?K
be
m
n
,
where gcd(m, n) = 1. Then m + n is equal to :
(1) 182 (2) 217
(3) 195 (4) 201
Ans. (4)
Sol.
2
2
2x 3x 8
y
2x 3x 8
?M?K
?] ?K?K
x
2
(2y – 2) + x(3y + 3) + 8y – 8 = 0
use D ?? 0
(3y + 3)
2
– 4(2y – 2) (8y – 8) ?? 0
(11y – 5) (5y – 11) ?? 0
5 11
y ,
11 5
????
????
????
????
y = 1 is also included
6. One of the points of intersection of the curves
y = 1 + 3x – 2x
2
and y =
1
x
is
1
,2
2
????
????
????
. Let the area
of the region enclosed by these curves be
?H ?I 1
5 m
24
?K – nlog
e ?H ?I 1 5 ?K , where ?? , m, n ??
N. Then ?? + m + n is equal to
(1) 32 (2) 30
(3) 29 (4) 31
Ans. (2)
Sol.
1 5
2
2
1
2
1
A 1 3x 2x dx
x
?K????
?] ?K ?M ?M ????
????
??
1 5
2 3
2
1
2
3x 2x
A x n x
2 3
?K ????
?] ?K ?M ?M ????
????
2 3
1 5 3 1 5 2 1 5 1 5
A n
2 2 2 3 2 2
?? ?? ?? ?? ?? ?? ?K ?K ?K ?K ?] ?K ?M ?M ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
1 3 1 2 1 1
n
2 2 4 3 8 2
?? ?? ?? ?? ?? ?? ?M ?M ?K ?K ?? ?? ?? ?? ????
?? ?? ?? ?? ????
1 5 3 3 15 4 2
A 5 5
2 2 8 4 8 3 3
?] ?K ?K ?K ?K ?M ?M
?H ?I 1 3 1
n 1 5
2 8 12
?M ?M ?K ?M ?K
?H ?I 1 3 2 15 4 1
5 n 1 5
2 4 3 8 3 12
????
?] ?K ?M ?K ?M ?K ?M ?K ????
????
?H ?I ?] ?K ?M ?K 14 15
5 n 1 5
24 24
7. If the system of equations
?H ?I ?H ?I x 2 sin y 2 cos z 0 ?K ?? ?K ?? ?]
x + (cos ?? )y + (sin ?? )z = 0
x + (sin ?? )y – (cos ?? )z = 0
has a non-trivial solution, then 0,
2
?? ????
????
????
????
is equal to :
(1)
3
4
?? (2)
7
24
??
(3)
5
24
?? (4)
11
24
??
Ans. (3)
Sol.
????
?? ?M ?? ?] ????
1 2 sin 2 cos
1 sin cos 0
1 cos sin
??
?H ?I ?H ?I ?M ?? ?? ?K ?? ?K ?? ?? ?M ?? ?] 1 2 sin sin cos 2 cos cos sin 0
?? ?K ?? ?M ?? ?] 1 2 cos2 2 sin2 0
?? ?M ?? ?] ?M 1
cos2 sin 2
2
?? ????
?? ?K ?] ?M ????
????
1
cos 2
4 2
????
?? ?K ?] ?? ?? 2
2 2n
4 3
????
?? ?K ?] ?? ?? n
8 3
n = 0,
5
x
3 8 24
?? ?? ?? ?]?M?]
8. There are 5 points P
1
, P
2
, P
3
, P
4
, P
5
on the side AB,
excluding A and B, of a triangle ABC. Similarly
there are 6 points P
6
, P
7
, …, P
11
on the side BC and 7
points P
12
, P
13
, …, P
18
on the side CA of the triangle.
The number of triangles, that can be formed using the
points P
1
, P
2
, …, P
18
as vertices, is :
(1) 776 (2) 751
(3) 796 (4) 771
Ans. (2)
Sol.
18
C
3
–
5
C
3
–
6
C
3
–
7
C
3
= 751
9. Let ƒ(x) =
2, 2 x 0
x 2, 0 x 2
?M ?M ?? ?? ?? ?? ?M ?\ ?? ?? and h(x) = f(|x|) + |f(x)|.
Then ?H ?I 2
2
h x dx
?M ?? is equal to :
(1) 2 (2) 4
(3) 1 (4) 6
Ans. (1)
Sol.
y=f(x
x
2
x–2
–2
–2
f(|x|) ?? |f(x)|
x
(2,0)
x–2
(0,–2)
(–2,0)
0
–x–2
x
2
–2
0
2
?M ?K ?M ?] ?? ?? ?? ?] ?? ?M ?M ?K ?] ?M ?M ?? ?\ ?? x 2 2 x 0, 0 x 2
h(x)
x 2 2 x 2 x 0
2 0
–2
?? ?] ?? 2
0
h(x)dx 0 and ?H ?I ?M ?] ?? 0
2
h x dx 2
10. The sum of all rational terms in the expansion of
?H ?I 15
1 1
5 3
2 5 ?K is equal to :
(1) 3133 (2) 633
(3) 931 (4) 6131
Ans. (1)
Sol. T
r + 1
=
15
C
r
?H ?I ?H ?I ?M 15 r r
1 1
3 5
5 2
?M ?] r 15 r
15
3 5
r
C 5 . 2
R = 3 ?? , 15µ
?? r = 0, 15
2 rational terms
?H ?I ???K
5
15 3 15
0 15
C 2 C 5
= 8 + 3125 = 3133
Page 4
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Thursday 04
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let ƒ : R ?? R be a function given by
?H ?I 2
1 cos2x
, x 0
x
ƒ x , x 0
1 cosx
, x 0
x
?? ?M ?\ ?? ?? ?? ?] ?? ?] ?? ?? ???M
?? ?^ ?? ?? , where ?? , ?? ?? R. If
ƒ is continuous at x = 0, then ?? 2
+ ?? 2
is equal to :
(1) 48 (2) 12
(3) 3 (4) 6
Ans. (2)
Sol. ƒ(0
–
) =
2
2
x 0
2sin x
lim
x
?M ?? = 2 = ??
ƒ(0
+
) =
x 0
x
sin
2
lim 2 2
x
2
2
2
?K ?? ?? ?? ?? ?] ?] ?? ?? = 2 2
?? 2
+ ?? 2
= 4 + 8 = 12
2. Three urns A, B and C contain 7 red, 5 black;
5 red, 7 black and 6 red, 6 black balls, respectively.
One of the urn is selected at random and a ball is
drawn from it. If the ball drawn is black, then the
probability that it is drawn from urn A is :
(1)
4
17
(2)
5
18
(3)
7
18
(4)
5
16
Ans. (2)
Sol.
A
7R, 5B
B
5R, 7B
C
6R, 6B
P(B) =
1 5 1 7 1 6
. . .
3 12 3 12 3 12
?K?K
required probability =
1 5
.
5
3 12
1 5 7 6 18
.
3 12 12 12
?] ????
?K?K
????
????
3. The vertices of a triangle are A(–1, 3), B(–2, 2) and
C(3, –1). A new triangle is formed by shifting the sides
of the triangle by one unit inwards. Then the equation
of the side of the new triangle nearest to origin is :
(1) x – y –
?H ?I 2 2 ?K = 0
(2) –x + y –
?H ?I 2 2 ?M = 0
(3) x + y –
?H ?I 2 2 ?M = 0
(4) x + y +
?H ?I 2 2 ?M = 0
Ans. (3)
Sol.
C
(–2,2)
m = –1
(3, –1)
B
A
(–1,3)
equation of AC ?? x + y = 2
equation of line parallel to AC x + y = d
?M ?] d 2
1
2
d 2 2 ?]?M
eq
n
of new required line
x y 2 2 ?K ?] ?M 4. If the solution y = y(x) of the differential equation
(x
4
+ 2x
3
+ 3x
2
+ 2x + 2)dy – (2x
2
+ 2x + 3)dx = 0
satisfies y(–1) =
4
?? ?M , then y(0) is equal to :
(1)
12
?? ?M (2) 0
(3)
4
?? (4)
2
?? Ans. (3)
Sol.
?H ?I 2
4 3 2
2x 2x 3
dy dx
x 2x 3x 2x 2
?K?K
?] ?K ?K ?K ?K ????
?H ?I ?H ?I ?H ?I 2
2 2
2x 2x 3
y dx
x 1 x 2x 2
?K?K
?] ?K ?K ?K ??
2 2
dx dx
y
x 2x 2 x 1
?]?K
?K ?K ?K ????
y = tan
–1
(x + 1) + tan
–1
x + C
y(–1) =
4
?M??
0 C
4 4
?M ?? ?? ?] ?M ?K ?? C = 0
?? y = tan
–1
(x + 1) + tan
–1
x
y(0) = tan
–1
1 =
4
??
5. Let the sum of the maximum and the minimum
values of the function f(x) =
2
2
2x 3x 8
2x 3x 8
?M?K
?K?K
be
m
n
,
where gcd(m, n) = 1. Then m + n is equal to :
(1) 182 (2) 217
(3) 195 (4) 201
Ans. (4)
Sol.
2
2
2x 3x 8
y
2x 3x 8
?M?K
?] ?K?K
x
2
(2y – 2) + x(3y + 3) + 8y – 8 = 0
use D ?? 0
(3y + 3)
2
– 4(2y – 2) (8y – 8) ?? 0
(11y – 5) (5y – 11) ?? 0
5 11
y ,
11 5
????
????
????
????
y = 1 is also included
6. One of the points of intersection of the curves
y = 1 + 3x – 2x
2
and y =
1
x
is
1
,2
2
????
????
????
. Let the area
of the region enclosed by these curves be
?H ?I 1
5 m
24
?K – nlog
e ?H ?I 1 5 ?K , where ?? , m, n ??
N. Then ?? + m + n is equal to
(1) 32 (2) 30
(3) 29 (4) 31
Ans. (2)
Sol.
1 5
2
2
1
2
1
A 1 3x 2x dx
x
?K????
?] ?K ?M ?M ????
????
??
1 5
2 3
2
1
2
3x 2x
A x n x
2 3
?K ????
?] ?K ?M ?M ????
????
2 3
1 5 3 1 5 2 1 5 1 5
A n
2 2 2 3 2 2
?? ?? ?? ?? ?? ?? ?K ?K ?K ?K ?] ?K ?M ?M ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
1 3 1 2 1 1
n
2 2 4 3 8 2
?? ?? ?? ?? ?? ?? ?M ?M ?K ?K ?? ?? ?? ?? ????
?? ?? ?? ?? ????
1 5 3 3 15 4 2
A 5 5
2 2 8 4 8 3 3
?] ?K ?K ?K ?K ?M ?M
?H ?I 1 3 1
n 1 5
2 8 12
?M ?M ?K ?M ?K
?H ?I 1 3 2 15 4 1
5 n 1 5
2 4 3 8 3 12
????
?] ?K ?M ?K ?M ?K ?M ?K ????
????
?H ?I ?] ?K ?M ?K 14 15
5 n 1 5
24 24
7. If the system of equations
?H ?I ?H ?I x 2 sin y 2 cos z 0 ?K ?? ?K ?? ?]
x + (cos ?? )y + (sin ?? )z = 0
x + (sin ?? )y – (cos ?? )z = 0
has a non-trivial solution, then 0,
2
?? ????
????
????
????
is equal to :
(1)
3
4
?? (2)
7
24
??
(3)
5
24
?? (4)
11
24
??
Ans. (3)
Sol.
????
?? ?M ?? ?] ????
1 2 sin 2 cos
1 sin cos 0
1 cos sin
??
?H ?I ?H ?I ?M ?? ?? ?K ?? ?K ?? ?? ?M ?? ?] 1 2 sin sin cos 2 cos cos sin 0
?? ?K ?? ?M ?? ?] 1 2 cos2 2 sin2 0
?? ?M ?? ?] ?M 1
cos2 sin 2
2
?? ????
?? ?K ?] ?M ????
????
1
cos 2
4 2
????
?? ?K ?] ?? ?? 2
2 2n
4 3
????
?? ?K ?] ?? ?? n
8 3
n = 0,
5
x
3 8 24
?? ?? ?? ?]?M?]
8. There are 5 points P
1
, P
2
, P
3
, P
4
, P
5
on the side AB,
excluding A and B, of a triangle ABC. Similarly
there are 6 points P
6
, P
7
, …, P
11
on the side BC and 7
points P
12
, P
13
, …, P
18
on the side CA of the triangle.
The number of triangles, that can be formed using the
points P
1
, P
2
, …, P
18
as vertices, is :
(1) 776 (2) 751
(3) 796 (4) 771
Ans. (2)
Sol.
18
C
3
–
5
C
3
–
6
C
3
–
7
C
3
= 751
9. Let ƒ(x) =
2, 2 x 0
x 2, 0 x 2
?M ?M ?? ?? ?? ?? ?M ?\ ?? ?? and h(x) = f(|x|) + |f(x)|.
Then ?H ?I 2
2
h x dx
?M ?? is equal to :
(1) 2 (2) 4
(3) 1 (4) 6
Ans. (1)
Sol.
y=f(x
x
2
x–2
–2
–2
f(|x|) ?? |f(x)|
x
(2,0)
x–2
(0,–2)
(–2,0)
0
–x–2
x
2
–2
0
2
?M ?K ?M ?] ?? ?? ?? ?] ?? ?M ?M ?K ?] ?M ?M ?? ?\ ?? x 2 2 x 0, 0 x 2
h(x)
x 2 2 x 2 x 0
2 0
–2
?? ?] ?? 2
0
h(x)dx 0 and ?H ?I ?M ?] ?? 0
2
h x dx 2
10. The sum of all rational terms in the expansion of
?H ?I 15
1 1
5 3
2 5 ?K is equal to :
(1) 3133 (2) 633
(3) 931 (4) 6131
Ans. (1)
Sol. T
r + 1
=
15
C
r
?H ?I ?H ?I ?M 15 r r
1 1
3 5
5 2
?M ?] r 15 r
15
3 5
r
C 5 . 2
R = 3 ?? , 15µ
?? r = 0, 15
2 rational terms
?H ?I ???K
5
15 3 15
0 15
C 2 C 5
= 8 + 3125 = 3133
11. Let a unit vector which makes an angle of 60° with
ˆˆ ˆ
2i 2j k ?K?M and an angle of 45° with
ˆ ˆ
i k ?M be C .
Then
1 1 2
ˆˆ ˆ
C i j k
2 3
3 2
????
?K ?M ?K ?M????
????
is :
(1)
2 2 1 2 2
ˆˆ ˆ
i j k
3 3 2 3
????
?M ?K ?K ?K????
????
(2)
2 1 1
ˆˆ ˆ
i j k
3 2
3 2
?K?M
(3)
1 1 1 1 1 2
ˆˆ ˆ
i j k
2 3
3 3 3 2 3
????
?? ?? ?? ?? ?K ?K ?M ?K ?K????
?? ?? ?? ?? ?? ?? ?? ?? ?? ??
(4)
2 1
ˆ ˆ
i k
3 2
?M
Ans. (4)
Sol.
1 2 3
ˆˆ ˆ
C C i C j C k ?] ?K ?K
C
1
2
+ C
2
2
+ C
3
2
= 1
?H ?I ?K ?M ?] ?? ˆˆ ˆ
C. 2i 2j k C 9 cos60
2C
1
+ 2C
2
– C
3
=
3
2
C
1
– C
3
= 1
C
1
+ 2C
2
=
1
2
C
1
=
2 1
3 2
?K
C
2
=
1
3 2
?M
C
3
=
2 1
3 2
?M
12. Let the first three terms 2, p and q, with q ?? 2, of a
G.P. be respectively the 7
th
, 8
th
and 13
th
terms of an
A.P. If the 5
th
term of the G.P. is the n
th
term of the
A.P., then n is equal to
(1) 151 (2) 169
(3) 177 (4) 163
Ans. (4)
Sol. p
2
= 2q
2 = a + 6d ...(i)
p = a + 7d ...(ii)
q = a + 12d ...(iii)
p – 2 = d ((ii) – (i))
q – p = 5d ((iii) – (ii))
q – p = 5(p – 2)
q = 6p – 10
p
2
= 2(6p – 10)
p
2
– 12p + 20 = 0
p = 10, 2
p = 10 ; q = 50
d = 8
a = –46
2, 10, 50, 250, 1250
ar
4
= a + (n – 1)d
1250 = –46 + (n – 1)8
n = 163
13. Let a, b ?? R. Let the mean and the variance of 6
observations –3, 4, 7, –6, a, b be 2 and 23,
respectively. The mean deviation about the mean
of these 6 observations is :
(1)
13
3
(2)
16
3
(3)
11
3
(4)
14
3
Ans. (1)
Sol.
i
x
2
6
?? ?] and
2
2 i
x
23
N
?? ?M ?? ?]
?? + ?? = 10
?? 2
+ ?? 2
= 52
solving we get ?? = 4, ?? = 6
???M
?K ?K ?K ?K ?K ?]?]
i
x x
5 2 5 8 2 4 13
6 6 3
Page 5
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Thursday 04
th
April, 2024) TIME : 9 : 00 AM to 12 : 00 NOON
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. Let ƒ : R ?? R be a function given by
?H ?I 2
1 cos2x
, x 0
x
ƒ x , x 0
1 cosx
, x 0
x
?? ?M ?\ ?? ?? ?? ?] ?? ?] ?? ?? ???M
?? ?^ ?? ?? , where ?? , ?? ?? R. If
ƒ is continuous at x = 0, then ?? 2
+ ?? 2
is equal to :
(1) 48 (2) 12
(3) 3 (4) 6
Ans. (2)
Sol. ƒ(0
–
) =
2
2
x 0
2sin x
lim
x
?M ?? = 2 = ??
ƒ(0
+
) =
x 0
x
sin
2
lim 2 2
x
2
2
2
?K ?? ?? ?? ?? ?] ?] ?? ?? = 2 2
?? 2
+ ?? 2
= 4 + 8 = 12
2. Three urns A, B and C contain 7 red, 5 black;
5 red, 7 black and 6 red, 6 black balls, respectively.
One of the urn is selected at random and a ball is
drawn from it. If the ball drawn is black, then the
probability that it is drawn from urn A is :
(1)
4
17
(2)
5
18
(3)
7
18
(4)
5
16
Ans. (2)
Sol.
A
7R, 5B
B
5R, 7B
C
6R, 6B
P(B) =
1 5 1 7 1 6
. . .
3 12 3 12 3 12
?K?K
required probability =
1 5
.
5
3 12
1 5 7 6 18
.
3 12 12 12
?] ????
?K?K
????
????
3. The vertices of a triangle are A(–1, 3), B(–2, 2) and
C(3, –1). A new triangle is formed by shifting the sides
of the triangle by one unit inwards. Then the equation
of the side of the new triangle nearest to origin is :
(1) x – y –
?H ?I 2 2 ?K = 0
(2) –x + y –
?H ?I 2 2 ?M = 0
(3) x + y –
?H ?I 2 2 ?M = 0
(4) x + y +
?H ?I 2 2 ?M = 0
Ans. (3)
Sol.
C
(–2,2)
m = –1
(3, –1)
B
A
(–1,3)
equation of AC ?? x + y = 2
equation of line parallel to AC x + y = d
?M ?] d 2
1
2
d 2 2 ?]?M
eq
n
of new required line
x y 2 2 ?K ?] ?M 4. If the solution y = y(x) of the differential equation
(x
4
+ 2x
3
+ 3x
2
+ 2x + 2)dy – (2x
2
+ 2x + 3)dx = 0
satisfies y(–1) =
4
?? ?M , then y(0) is equal to :
(1)
12
?? ?M (2) 0
(3)
4
?? (4)
2
?? Ans. (3)
Sol.
?H ?I 2
4 3 2
2x 2x 3
dy dx
x 2x 3x 2x 2
?K?K
?] ?K ?K ?K ?K ????
?H ?I ?H ?I ?H ?I 2
2 2
2x 2x 3
y dx
x 1 x 2x 2
?K?K
?] ?K ?K ?K ??
2 2
dx dx
y
x 2x 2 x 1
?]?K
?K ?K ?K ????
y = tan
–1
(x + 1) + tan
–1
x + C
y(–1) =
4
?M??
0 C
4 4
?M ?? ?? ?] ?M ?K ?? C = 0
?? y = tan
–1
(x + 1) + tan
–1
x
y(0) = tan
–1
1 =
4
??
5. Let the sum of the maximum and the minimum
values of the function f(x) =
2
2
2x 3x 8
2x 3x 8
?M?K
?K?K
be
m
n
,
where gcd(m, n) = 1. Then m + n is equal to :
(1) 182 (2) 217
(3) 195 (4) 201
Ans. (4)
Sol.
2
2
2x 3x 8
y
2x 3x 8
?M?K
?] ?K?K
x
2
(2y – 2) + x(3y + 3) + 8y – 8 = 0
use D ?? 0
(3y + 3)
2
– 4(2y – 2) (8y – 8) ?? 0
(11y – 5) (5y – 11) ?? 0
5 11
y ,
11 5
????
????
????
????
y = 1 is also included
6. One of the points of intersection of the curves
y = 1 + 3x – 2x
2
and y =
1
x
is
1
,2
2
????
????
????
. Let the area
of the region enclosed by these curves be
?H ?I 1
5 m
24
?K – nlog
e ?H ?I 1 5 ?K , where ?? , m, n ??
N. Then ?? + m + n is equal to
(1) 32 (2) 30
(3) 29 (4) 31
Ans. (2)
Sol.
1 5
2
2
1
2
1
A 1 3x 2x dx
x
?K????
?] ?K ?M ?M ????
????
??
1 5
2 3
2
1
2
3x 2x
A x n x
2 3
?K ????
?] ?K ?M ?M ????
????
2 3
1 5 3 1 5 2 1 5 1 5
A n
2 2 2 3 2 2
?? ?? ?? ?? ?? ?? ?K ?K ?K ?K ?] ?K ?M ?M ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??
1 3 1 2 1 1
n
2 2 4 3 8 2
?? ?? ?? ?? ?? ?? ?M ?M ?K ?K ?? ?? ?? ?? ????
?? ?? ?? ?? ????
1 5 3 3 15 4 2
A 5 5
2 2 8 4 8 3 3
?] ?K ?K ?K ?K ?M ?M
?H ?I 1 3 1
n 1 5
2 8 12
?M ?M ?K ?M ?K
?H ?I 1 3 2 15 4 1
5 n 1 5
2 4 3 8 3 12
????
?] ?K ?M ?K ?M ?K ?M ?K ????
????
?H ?I ?] ?K ?M ?K 14 15
5 n 1 5
24 24
7. If the system of equations
?H ?I ?H ?I x 2 sin y 2 cos z 0 ?K ?? ?K ?? ?]
x + (cos ?? )y + (sin ?? )z = 0
x + (sin ?? )y – (cos ?? )z = 0
has a non-trivial solution, then 0,
2
?? ????
????
????
????
is equal to :
(1)
3
4
?? (2)
7
24
??
(3)
5
24
?? (4)
11
24
??
Ans. (3)
Sol.
????
?? ?M ?? ?] ????
1 2 sin 2 cos
1 sin cos 0
1 cos sin
??
?H ?I ?H ?I ?M ?? ?? ?K ?? ?K ?? ?? ?M ?? ?] 1 2 sin sin cos 2 cos cos sin 0
?? ?K ?? ?M ?? ?] 1 2 cos2 2 sin2 0
?? ?M ?? ?] ?M 1
cos2 sin 2
2
?? ????
?? ?K ?] ?M ????
????
1
cos 2
4 2
????
?? ?K ?] ?? ?? 2
2 2n
4 3
????
?? ?K ?] ?? ?? n
8 3
n = 0,
5
x
3 8 24
?? ?? ?? ?]?M?]
8. There are 5 points P
1
, P
2
, P
3
, P
4
, P
5
on the side AB,
excluding A and B, of a triangle ABC. Similarly
there are 6 points P
6
, P
7
, …, P
11
on the side BC and 7
points P
12
, P
13
, …, P
18
on the side CA of the triangle.
The number of triangles, that can be formed using the
points P
1
, P
2
, …, P
18
as vertices, is :
(1) 776 (2) 751
(3) 796 (4) 771
Ans. (2)
Sol.
18
C
3
–
5
C
3
–
6
C
3
–
7
C
3
= 751
9. Let ƒ(x) =
2, 2 x 0
x 2, 0 x 2
?M ?M ?? ?? ?? ?? ?M ?\ ?? ?? and h(x) = f(|x|) + |f(x)|.
Then ?H ?I 2
2
h x dx
?M ?? is equal to :
(1) 2 (2) 4
(3) 1 (4) 6
Ans. (1)
Sol.
y=f(x
x
2
x–2
–2
–2
f(|x|) ?? |f(x)|
x
(2,0)
x–2
(0,–2)
(–2,0)
0
–x–2
x
2
–2
0
2
?M ?K ?M ?] ?? ?? ?? ?] ?? ?M ?M ?K ?] ?M ?M ?? ?\ ?? x 2 2 x 0, 0 x 2
h(x)
x 2 2 x 2 x 0
2 0
–2
?? ?] ?? 2
0
h(x)dx 0 and ?H ?I ?M ?] ?? 0
2
h x dx 2
10. The sum of all rational terms in the expansion of
?H ?I 15
1 1
5 3
2 5 ?K is equal to :
(1) 3133 (2) 633
(3) 931 (4) 6131
Ans. (1)
Sol. T
r + 1
=
15
C
r
?H ?I ?H ?I ?M 15 r r
1 1
3 5
5 2
?M ?] r 15 r
15
3 5
r
C 5 . 2
R = 3 ?? , 15µ
?? r = 0, 15
2 rational terms
?H ?I ???K
5
15 3 15
0 15
C 2 C 5
= 8 + 3125 = 3133
11. Let a unit vector which makes an angle of 60° with
ˆˆ ˆ
2i 2j k ?K?M and an angle of 45° with
ˆ ˆ
i k ?M be C .
Then
1 1 2
ˆˆ ˆ
C i j k
2 3
3 2
????
?K ?M ?K ?M????
????
is :
(1)
2 2 1 2 2
ˆˆ ˆ
i j k
3 3 2 3
????
?M ?K ?K ?K????
????
(2)
2 1 1
ˆˆ ˆ
i j k
3 2
3 2
?K?M
(3)
1 1 1 1 1 2
ˆˆ ˆ
i j k
2 3
3 3 3 2 3
????
?? ?? ?? ?? ?K ?K ?M ?K ?K????
?? ?? ?? ?? ?? ?? ?? ?? ?? ??
(4)
2 1
ˆ ˆ
i k
3 2
?M
Ans. (4)
Sol.
1 2 3
ˆˆ ˆ
C C i C j C k ?] ?K ?K
C
1
2
+ C
2
2
+ C
3
2
= 1
?H ?I ?K ?M ?] ?? ˆˆ ˆ
C. 2i 2j k C 9 cos60
2C
1
+ 2C
2
– C
3
=
3
2
C
1
– C
3
= 1
C
1
+ 2C
2
=
1
2
C
1
=
2 1
3 2
?K
C
2
=
1
3 2
?M
C
3
=
2 1
3 2
?M
12. Let the first three terms 2, p and q, with q ?? 2, of a
G.P. be respectively the 7
th
, 8
th
and 13
th
terms of an
A.P. If the 5
th
term of the G.P. is the n
th
term of the
A.P., then n is equal to
(1) 151 (2) 169
(3) 177 (4) 163
Ans. (4)
Sol. p
2
= 2q
2 = a + 6d ...(i)
p = a + 7d ...(ii)
q = a + 12d ...(iii)
p – 2 = d ((ii) – (i))
q – p = 5d ((iii) – (ii))
q – p = 5(p – 2)
q = 6p – 10
p
2
= 2(6p – 10)
p
2
– 12p + 20 = 0
p = 10, 2
p = 10 ; q = 50
d = 8
a = –46
2, 10, 50, 250, 1250
ar
4
= a + (n – 1)d
1250 = –46 + (n – 1)8
n = 163
13. Let a, b ?? R. Let the mean and the variance of 6
observations –3, 4, 7, –6, a, b be 2 and 23,
respectively. The mean deviation about the mean
of these 6 observations is :
(1)
13
3
(2)
16
3
(3)
11
3
(4)
14
3
Ans. (1)
Sol.
i
x
2
6
?? ?] and
2
2 i
x
23
N
?? ?M ?? ?]
?? + ?? = 10
?? 2
+ ?? 2
= 52
solving we get ?? = 4, ?? = 6
???M
?K ?K ?K ?K ?K ?]?]
i
x x
5 2 5 8 2 4 13
6 6 3
14. If 2 and 6 are the roots of the equation ax
2
+ bx + 1 = 0,
then the quadratic equation, whose roots are
1
2a b ?K and
1
6a b ?K , is :
(1) 2x
2
+ 11x + 12 = 0 (2) 4x
2
+ 14x + 12 = 0
(3) x
2
+ 10x + 16 = 0 (4) x
2
+ 8x + 12 = 0
Ans. (4)
Sol. Sum = 8 =
b
a
?M
Product = 12 =
1
a
?? a =
1
12
b =
2
3
?M
2a + b =
2 2 1
12 3 2
?M ?] ?M
6a + b =
6 2 1
12 3 6
?M ?] ?M
sum = –8
P = 12
x
2
+ 8x + 12 = 0
15. Let ?? and ?? be the sum and the product of all the
non-zero solutions of the equation
?H ?I 2
z z 0 ?K?] , z ?? C.
Then 4( ?? 2
+ ?? 2
) is equal to :
(1) 6 (2) 4
(3) 8 (4) 2
Ans. (2)
Sol. z = x + iy
z x iy ?]?M
2 2 2
z x y 2ixy ?] ?M ?M
2 2 2 2
x y 2ixy x y 0 ?? ?M ?M ?K ?K ?]
?? x = 0 or y = 0
–y
2
+ |y| = 0 x
2
+ |x| = 0
|y| = |y|
2
?? x = 0
y = 0, ±1
?? i, –i ?? ?? = i – i = 0
are roots ?? = i(–i) = 1
4(0 + 1) = 4
16. Let the point, on the line passing through the points
P(1, –2, 3) and Q(5, –4, 7), farther from the origin
and at a distance of 9 units from the point P, be
( ?? , ?? , ?? ). Then ?? 2
+ ?? 2
+ ?? 2
is equal to :
(1) 155 (2) 150
(3) 160 (4) 165
Ans. (1)
Sol. PQ line
x 1 y 2 z 3
4 2 4
?M ?K ?M ?]?]
?M
pt (4t + 1, –2t – 2, 4t + 3)
distance
2
= 16t
2
+ 4t
2
+ 16t
2
= 81
3
t
2
?]??
pt (7, –5, 9)
?? 2
+ ?? 2
+ ?? 2
= 155
option (1)
17. A square is inscribed in the circle
x
2
+ y
2
– 10x – 6y + 30 = 0. One side of this square
is parallel to y = x + 3. If (x
i
, y
i
) are the vertices of
the square, then ?H ?I 2 2
i i
x y ?K ?? is equal to :
(1) 148 (2) 156
(3) 160 (4) 152
Ans. (4)
Sol.
(5,3)
2
y = x + c & x + y + d = 0
5 3 c
2
2
?M?K
?]
8 d
2
2
?K ?]
|c + 2| = 2 8 + d = ±2
c = 0, – 4 d = –10, –6
pts (5, 5), (3, 3), (7, 3), (5, 1)
?H ?I 2 2
i 1
x y 25 25 9 9 49 9 25 1 ?K ?] ?K ?K ?K ?K ?K ?K ?K ??
= 152
Option (4)
Read More