Page 1
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Thursday 04
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. If the function ?H ?I ?? ?M ?M ?K ?? ?? ?] ?M?K ?? ?? ?] ?? x x x
e e
72 9 8 1
, x 0
f x
2 1 cosx
a log 2log 3 , x 0
is continuous at x = 0, then the value of a
2
is equal
to
(1) 968 (2) 1152
(3) 746 (4) 1250
Ans. (2)
Sol. ?H ?I ?? ?] x 0
lim f x a n2 n3
?H ?I ?H ?I ????
?M?M
?M ?M ?K ?] ?M ?K ?M ?K x x
x x x
n 0 x 0
8 1 9 1
72 9 8 1
lim lim
2 1 cosx 2 1 cosx
?H ?I ?? ?? ?? ?? ?? ?? ?? ?M?M
?K?K
?? ?? ?? ?? ?? ?? ?M ?? ?? ?? ?? ?? ?? x x 2
n 0
8 1 9 1 x
lim 2 1 cosx
x x 1 cosx
?| ?? ?? ?? ?] n8 n9 2 2 2 24 2 n2 n3
?| a = 24 2 , a
2
= 576 × 2 = 1152
2. If ?? > 0, let ?? be the angle between the vectors
?] ?K ?? ?Mˆˆ ˆ
a i j 3k and ?] ?M ?K ˆˆ ˆ
b 3i j 2k . If the vectors
?K a b and ?M a b are mutually perpendicular, then
the value of (14 cos ?? )
2
is equal to
(1) 25 (2) 20
(3) 50 (4) 40
Ans. (1)
Sol.
?H ?I ?H ?I ?K ?M ?] a b . a b 0 , ?? ?@?^ 0
?M?]
2
2
a b 0 ?? 1 + ?? 2
+ 9 = 9 + 1 + 4
?| ?? = 2,
?M ?M ?? ?M ?? ?] ?] a b 3 6
cos
a . b 14. 14
14cos ?? = 3 – 8 = –5
?| (14 cos ?? )
2
= 25
3. Let C be a circle with radius 10 units and centre
at the origin. Let the line x + y = 2 intersects the
circle C at the points P and Q. Let MN be a chord
of C of length 2 unit and slope –1. Then, a distance
(in units) between the chord PQ and the chord MN
is
(1) ?M 2 3 (2) ?M 3 2
(3) ?M 2 1 (4) ?K 2 1
Ans. (2)
M
N
O
A
10
C : x
2
+ y
2
= 10
AN = ?] MN
1
2
?| In ?d OAN ?? (ON)
2
= (OA)
2
+ (AN)
2
10 = (OA)
2
+ 1 ?? ?@ OA = 3
Perpendicular distance of center from
?K?M
?]?]
0 0 2
PQ 2
2
Perpendicular distance between MN and
?]?K PQ OA 2 or ?M OA 2
?]?K3 2 or ?M 3 2
Page 2
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Thursday 04
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. If the function ?H ?I ?? ?M ?M ?K ?? ?? ?] ?M?K ?? ?? ?] ?? x x x
e e
72 9 8 1
, x 0
f x
2 1 cosx
a log 2log 3 , x 0
is continuous at x = 0, then the value of a
2
is equal
to
(1) 968 (2) 1152
(3) 746 (4) 1250
Ans. (2)
Sol. ?H ?I ?? ?] x 0
lim f x a n2 n3
?H ?I ?H ?I ????
?M?M
?M ?M ?K ?] ?M ?K ?M ?K x x
x x x
n 0 x 0
8 1 9 1
72 9 8 1
lim lim
2 1 cosx 2 1 cosx
?H ?I ?? ?? ?? ?? ?? ?? ?? ?M?M
?K?K
?? ?? ?? ?? ?? ?? ?M ?? ?? ?? ?? ?? ?? x x 2
n 0
8 1 9 1 x
lim 2 1 cosx
x x 1 cosx
?| ?? ?? ?? ?] n8 n9 2 2 2 24 2 n2 n3
?| a = 24 2 , a
2
= 576 × 2 = 1152
2. If ?? > 0, let ?? be the angle between the vectors
?] ?K ?? ?Mˆˆ ˆ
a i j 3k and ?] ?M ?K ˆˆ ˆ
b 3i j 2k . If the vectors
?K a b and ?M a b are mutually perpendicular, then
the value of (14 cos ?? )
2
is equal to
(1) 25 (2) 20
(3) 50 (4) 40
Ans. (1)
Sol.
?H ?I ?H ?I ?K ?M ?] a b . a b 0 , ?? ?@?^ 0
?M?]
2
2
a b 0 ?? 1 + ?? 2
+ 9 = 9 + 1 + 4
?| ?? = 2,
?M ?M ?? ?M ?? ?] ?] a b 3 6
cos
a . b 14. 14
14cos ?? = 3 – 8 = –5
?| (14 cos ?? )
2
= 25
3. Let C be a circle with radius 10 units and centre
at the origin. Let the line x + y = 2 intersects the
circle C at the points P and Q. Let MN be a chord
of C of length 2 unit and slope –1. Then, a distance
(in units) between the chord PQ and the chord MN
is
(1) ?M 2 3 (2) ?M 3 2
(3) ?M 2 1 (4) ?K 2 1
Ans. (2)
M
N
O
A
10
C : x
2
+ y
2
= 10
AN = ?] MN
1
2
?| In ?d OAN ?? (ON)
2
= (OA)
2
+ (AN)
2
10 = (OA)
2
+ 1 ?? ?@ OA = 3
Perpendicular distance of center from
?K?M
?]?]
0 0 2
PQ 2
2
Perpendicular distance between MN and
?]?K PQ OA 2 or ?M OA 2
?]?K3 2 or ?M 3 2
4. Let a relation R on ?? be defined as :
(x
1
,y
1
) R(x
2
,y
2
) if and only if x
1
< x
2
or y
1
< y
2
Consider the two statements :
(I) R is reflexive but not symmetric.
(II) R is transitive
Then which one of the following is true ?
(1) Only (II) is correct.
(2) Only (I) is correct.
(3) Both (I) and (II) are correct.
(4) Neither (I) nor (II) is correct.
Ans. (2)
Sol. All ((x
1
y
1
), (x
1
,y
1
)) are in R where
x
1
, y
1
?? N ?| R is reflexive
((1,1), (2,3)) ?? R but ((2,3), (1,1)) ?? R
?| R is not symmetric
((2,4), (3,3)) ?? R and ((3,3), (1,3)) ?? R but ((2,4),
(1,3)) ?? R
?| R is not transitive
5. Let three real numbers a,b,c be in arithmetic
progression and a + 1, b, c + 3 be in geometric
progression. If a > 10 and the arithmetic mean of
a,b and c is 8, then the cube of the geometric mean
of a,b and c is
(1) 120 (2) 312
(3) 316 (4) 128
Ans. (1)
Sol. 2b = a + c, b
2
= (a + 1) (c + 3),
?K?K
?] ?? ?] ?K ?] a b c
8 b 8,a c 16
3
64 = (a + 1) (19 – a) = 19 + 18a – a
2
a
2
– 18a – 45 = 0 ?? (a – 15) (a + 3) = 0, (a > 10)
a = 15, c = 1, b = 8
((abc)
1/3
)
3
= abc = 120
6. Let
????
?]????
????
1 2
A
0 1
and B = I + adj(A) + (adj A)
2
+…+
(adj A)
10
. Then, the sum of all the elements of the
matrix B is :
(1) –110 (2) 22
(3) –88 (4) –124
Ans. (3)
Sol. Adj(A) =
?M ????
????
????
1 2
0 1
(AdjA)
2
=
?M ????
????
????
1 4
0 1
|
|
?H ?I ?M ????
?]????
????
10
1 20
AdjA
0 1
?M ?M ?M ?? ?? ?? ?? ?? ?? ?? ?? ?] ?K ?K ?K ?K ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 1 0 1 2 1 4 1 20
B ...
0 1 0 1 0 1 0 1
?M ????
?]????
????
11 110
B
0 11
?? sum of elements of B
= –88
7. The value of
?H ?I ?? ?K ?? ?K ?K ?? ?? ?K ?? ?K ?K ?? 2
2 2
2 2 2
1 2 2 3 ... 100 101
1 2 2 3 ... 100 101
is
(1)
306
305
(2)
305
301
(3)
32
31
(4)
31
30
Ans. (2)
Sol.
?H ?I ?H ?I ?H ?I ?] ?] ?K ?? ?K ?? ?K ?K ?? ?] ?? ?K ?? ?K ?K ?? ?K ?? ?? 100
2
2
2 2
r 1
2 2 2 100
2
r 1
r r 1
1 2 2 3 ... 100 101
1 2 2 3 ... 100 101
r r 1
?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?] ?] ????
?K ?K ?K ?K ?????K?K
?K?K
????
????
?]?]
???? ?K ?K ?K ?K ?K ????
????
?? ?? 2
100
3 2
r 1
100 2
3 2
r 1
n n 1 2.n n 1 2n 1 n n 1
r 2r r
2 6 2
n n 1 n n 1 2n 1
r r
2 6
?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ???? ?K?K
?K ?K ?K ????
????
?] ???? ?K ?K ?K ?K ????
????
n n 1 n n 1
2
. 2n 1 1
2 2 3
n n 1 n n 1 2n 1
2 2 3
;Put n = 100
?H ?I ?H ?I ?K?K
?] ?] ?] ?? ?K 100 101
2
201 1
5185 305
2 3
100 101 201
5117 301
2 3
Page 3
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Thursday 04
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. If the function ?H ?I ?? ?M ?M ?K ?? ?? ?] ?M?K ?? ?? ?] ?? x x x
e e
72 9 8 1
, x 0
f x
2 1 cosx
a log 2log 3 , x 0
is continuous at x = 0, then the value of a
2
is equal
to
(1) 968 (2) 1152
(3) 746 (4) 1250
Ans. (2)
Sol. ?H ?I ?? ?] x 0
lim f x a n2 n3
?H ?I ?H ?I ????
?M?M
?M ?M ?K ?] ?M ?K ?M ?K x x
x x x
n 0 x 0
8 1 9 1
72 9 8 1
lim lim
2 1 cosx 2 1 cosx
?H ?I ?? ?? ?? ?? ?? ?? ?? ?M?M
?K?K
?? ?? ?? ?? ?? ?? ?M ?? ?? ?? ?? ?? ?? x x 2
n 0
8 1 9 1 x
lim 2 1 cosx
x x 1 cosx
?| ?? ?? ?? ?] n8 n9 2 2 2 24 2 n2 n3
?| a = 24 2 , a
2
= 576 × 2 = 1152
2. If ?? > 0, let ?? be the angle between the vectors
?] ?K ?? ?Mˆˆ ˆ
a i j 3k and ?] ?M ?K ˆˆ ˆ
b 3i j 2k . If the vectors
?K a b and ?M a b are mutually perpendicular, then
the value of (14 cos ?? )
2
is equal to
(1) 25 (2) 20
(3) 50 (4) 40
Ans. (1)
Sol.
?H ?I ?H ?I ?K ?M ?] a b . a b 0 , ?? ?@?^ 0
?M?]
2
2
a b 0 ?? 1 + ?? 2
+ 9 = 9 + 1 + 4
?| ?? = 2,
?M ?M ?? ?M ?? ?] ?] a b 3 6
cos
a . b 14. 14
14cos ?? = 3 – 8 = –5
?| (14 cos ?? )
2
= 25
3. Let C be a circle with radius 10 units and centre
at the origin. Let the line x + y = 2 intersects the
circle C at the points P and Q. Let MN be a chord
of C of length 2 unit and slope –1. Then, a distance
(in units) between the chord PQ and the chord MN
is
(1) ?M 2 3 (2) ?M 3 2
(3) ?M 2 1 (4) ?K 2 1
Ans. (2)
M
N
O
A
10
C : x
2
+ y
2
= 10
AN = ?] MN
1
2
?| In ?d OAN ?? (ON)
2
= (OA)
2
+ (AN)
2
10 = (OA)
2
+ 1 ?? ?@ OA = 3
Perpendicular distance of center from
?K?M
?]?]
0 0 2
PQ 2
2
Perpendicular distance between MN and
?]?K PQ OA 2 or ?M OA 2
?]?K3 2 or ?M 3 2
4. Let a relation R on ?? be defined as :
(x
1
,y
1
) R(x
2
,y
2
) if and only if x
1
< x
2
or y
1
< y
2
Consider the two statements :
(I) R is reflexive but not symmetric.
(II) R is transitive
Then which one of the following is true ?
(1) Only (II) is correct.
(2) Only (I) is correct.
(3) Both (I) and (II) are correct.
(4) Neither (I) nor (II) is correct.
Ans. (2)
Sol. All ((x
1
y
1
), (x
1
,y
1
)) are in R where
x
1
, y
1
?? N ?| R is reflexive
((1,1), (2,3)) ?? R but ((2,3), (1,1)) ?? R
?| R is not symmetric
((2,4), (3,3)) ?? R and ((3,3), (1,3)) ?? R but ((2,4),
(1,3)) ?? R
?| R is not transitive
5. Let three real numbers a,b,c be in arithmetic
progression and a + 1, b, c + 3 be in geometric
progression. If a > 10 and the arithmetic mean of
a,b and c is 8, then the cube of the geometric mean
of a,b and c is
(1) 120 (2) 312
(3) 316 (4) 128
Ans. (1)
Sol. 2b = a + c, b
2
= (a + 1) (c + 3),
?K?K
?] ?? ?] ?K ?] a b c
8 b 8,a c 16
3
64 = (a + 1) (19 – a) = 19 + 18a – a
2
a
2
– 18a – 45 = 0 ?? (a – 15) (a + 3) = 0, (a > 10)
a = 15, c = 1, b = 8
((abc)
1/3
)
3
= abc = 120
6. Let
????
?]????
????
1 2
A
0 1
and B = I + adj(A) + (adj A)
2
+…+
(adj A)
10
. Then, the sum of all the elements of the
matrix B is :
(1) –110 (2) 22
(3) –88 (4) –124
Ans. (3)
Sol. Adj(A) =
?M ????
????
????
1 2
0 1
(AdjA)
2
=
?M ????
????
????
1 4
0 1
|
|
?H ?I ?M ????
?]????
????
10
1 20
AdjA
0 1
?M ?M ?M ?? ?? ?? ?? ?? ?? ?? ?? ?] ?K ?K ?K ?K ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 1 0 1 2 1 4 1 20
B ...
0 1 0 1 0 1 0 1
?M ????
?]????
????
11 110
B
0 11
?? sum of elements of B
= –88
7. The value of
?H ?I ?? ?K ?? ?K ?K ?? ?? ?K ?? ?K ?K ?? 2
2 2
2 2 2
1 2 2 3 ... 100 101
1 2 2 3 ... 100 101
is
(1)
306
305
(2)
305
301
(3)
32
31
(4)
31
30
Ans. (2)
Sol.
?H ?I ?H ?I ?H ?I ?] ?] ?K ?? ?K ?? ?K ?K ?? ?] ?? ?K ?? ?K ?K ?? ?K ?? ?? 100
2
2
2 2
r 1
2 2 2 100
2
r 1
r r 1
1 2 2 3 ... 100 101
1 2 2 3 ... 100 101
r r 1
?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?] ?] ????
?K ?K ?K ?K ?????K?K
?K?K
????
????
?]?]
???? ?K ?K ?K ?K ?K ????
????
?? ?? 2
100
3 2
r 1
100 2
3 2
r 1
n n 1 2.n n 1 2n 1 n n 1
r 2r r
2 6 2
n n 1 n n 1 2n 1
r r
2 6
?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ???? ?K?K
?K ?K ?K ????
????
?] ???? ?K ?K ?K ?K ????
????
n n 1 n n 1
2
. 2n 1 1
2 2 3
n n 1 n n 1 2n 1
2 2 3
;Put n = 100
?H ?I ?H ?I ?K?K
?] ?] ?] ?? ?K 100 101
2
201 1
5185 305
2 3
100 101 201
5117 301
2 3
8. Let ?H ?I ?H ?I ?H ?I ?] ?K ?M ?? ?? x
t
0
f x t sin 1 e dt,x .
Then
?H ?I ?? 3
x 0
f x
lim
x
is equal to
(1)
1
6
(2) ?M 1
6
(3) ?M 2
3
(4)
2
3
Ans. (2)
Sol.
?H ?I ?? 3
x 0
f x
lim
x
Using L Hopital Rule.
?H ?I ?H ?I ????
?K?M
?] x
2 2
x 0 x 0
x sin 1 e
f ' x
lim lim
3x 3x
(Again L Hopital)
Using L.H. Rule
?H ?I ?H ?I ?H ?I ??????
?M ?M ?M ?K ?M ????
?] x x x x x
x 0
sin 1 e e .e cos 1 e .e
lim
6
?]?M
1
6
9. The area (in sq. units) of the region described by
{(x,y) : y
2
< 2x, and y > 4x –1} is
(1)
11
32
(2)
8
9
(3)
11
12
(4)
9
32
Ans. (4)
Sol.
Q
1
P
y
x
0
–1/2
(0,–1)
y'
x'
(1/4,0
Shaded area
?H ?I ?M?]?M
?? 1
Right Left
1
2
x x dy
?] ?]?M
?] ?] ?M 2
y 2x
y 4x 1 Solve
1
y 1,y
2
Shaded area
?M ????
?K ?]?M
????
????
?? 1 2
1
2
y 1 y
dy
4 2
?M ???? ????
?] ?K ?M ?] ???? ????
????
???? ????
1
2 3
1
2
1 y y 9
y
4 2 6 32
10. The area (in sq. units) of the region
?H ?I ?H ?I ?H ?I ?? ?? ?] ?? ?M ?? ?K ?K ?M ?? ?? S z ; z 1 2; z z i z z 2,lm z 0
is
(1)
?? 7
3
(2)
?? 3
2
(3)
?? 17
8
(4)
?? 7
4
Ans. (2)
Sol. Put z = x + iy
?H ?I ?M ?? ?? ?M ?K ?? 2
2
z 1 2 x 1 y 4 …(1)
?H ?I ?H ?I ?H ?I ?K ?K ?M ?? ?? ?K ?? z z i z z 2 2x i 2iy 2
?? ?M ?? x y 1 …(2)
Im(z) > 0 ?? y > 0 …(3)
(–3,0) (1,0) (5,0)
x–y=1
?? /4
Required area
= Area of semi-circle – area of sector A
?H ?I ?? ???M
2 1
2
2 2
?? ?] 3
2
Page 4
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Thursday 04
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. If the function ?H ?I ?? ?M ?M ?K ?? ?? ?] ?M?K ?? ?? ?] ?? x x x
e e
72 9 8 1
, x 0
f x
2 1 cosx
a log 2log 3 , x 0
is continuous at x = 0, then the value of a
2
is equal
to
(1) 968 (2) 1152
(3) 746 (4) 1250
Ans. (2)
Sol. ?H ?I ?? ?] x 0
lim f x a n2 n3
?H ?I ?H ?I ????
?M?M
?M ?M ?K ?] ?M ?K ?M ?K x x
x x x
n 0 x 0
8 1 9 1
72 9 8 1
lim lim
2 1 cosx 2 1 cosx
?H ?I ?? ?? ?? ?? ?? ?? ?? ?M?M
?K?K
?? ?? ?? ?? ?? ?? ?M ?? ?? ?? ?? ?? ?? x x 2
n 0
8 1 9 1 x
lim 2 1 cosx
x x 1 cosx
?| ?? ?? ?? ?] n8 n9 2 2 2 24 2 n2 n3
?| a = 24 2 , a
2
= 576 × 2 = 1152
2. If ?? > 0, let ?? be the angle between the vectors
?] ?K ?? ?Mˆˆ ˆ
a i j 3k and ?] ?M ?K ˆˆ ˆ
b 3i j 2k . If the vectors
?K a b and ?M a b are mutually perpendicular, then
the value of (14 cos ?? )
2
is equal to
(1) 25 (2) 20
(3) 50 (4) 40
Ans. (1)
Sol.
?H ?I ?H ?I ?K ?M ?] a b . a b 0 , ?? ?@?^ 0
?M?]
2
2
a b 0 ?? 1 + ?? 2
+ 9 = 9 + 1 + 4
?| ?? = 2,
?M ?M ?? ?M ?? ?] ?] a b 3 6
cos
a . b 14. 14
14cos ?? = 3 – 8 = –5
?| (14 cos ?? )
2
= 25
3. Let C be a circle with radius 10 units and centre
at the origin. Let the line x + y = 2 intersects the
circle C at the points P and Q. Let MN be a chord
of C of length 2 unit and slope –1. Then, a distance
(in units) between the chord PQ and the chord MN
is
(1) ?M 2 3 (2) ?M 3 2
(3) ?M 2 1 (4) ?K 2 1
Ans. (2)
M
N
O
A
10
C : x
2
+ y
2
= 10
AN = ?] MN
1
2
?| In ?d OAN ?? (ON)
2
= (OA)
2
+ (AN)
2
10 = (OA)
2
+ 1 ?? ?@ OA = 3
Perpendicular distance of center from
?K?M
?]?]
0 0 2
PQ 2
2
Perpendicular distance between MN and
?]?K PQ OA 2 or ?M OA 2
?]?K3 2 or ?M 3 2
4. Let a relation R on ?? be defined as :
(x
1
,y
1
) R(x
2
,y
2
) if and only if x
1
< x
2
or y
1
< y
2
Consider the two statements :
(I) R is reflexive but not symmetric.
(II) R is transitive
Then which one of the following is true ?
(1) Only (II) is correct.
(2) Only (I) is correct.
(3) Both (I) and (II) are correct.
(4) Neither (I) nor (II) is correct.
Ans. (2)
Sol. All ((x
1
y
1
), (x
1
,y
1
)) are in R where
x
1
, y
1
?? N ?| R is reflexive
((1,1), (2,3)) ?? R but ((2,3), (1,1)) ?? R
?| R is not symmetric
((2,4), (3,3)) ?? R and ((3,3), (1,3)) ?? R but ((2,4),
(1,3)) ?? R
?| R is not transitive
5. Let three real numbers a,b,c be in arithmetic
progression and a + 1, b, c + 3 be in geometric
progression. If a > 10 and the arithmetic mean of
a,b and c is 8, then the cube of the geometric mean
of a,b and c is
(1) 120 (2) 312
(3) 316 (4) 128
Ans. (1)
Sol. 2b = a + c, b
2
= (a + 1) (c + 3),
?K?K
?] ?? ?] ?K ?] a b c
8 b 8,a c 16
3
64 = (a + 1) (19 – a) = 19 + 18a – a
2
a
2
– 18a – 45 = 0 ?? (a – 15) (a + 3) = 0, (a > 10)
a = 15, c = 1, b = 8
((abc)
1/3
)
3
= abc = 120
6. Let
????
?]????
????
1 2
A
0 1
and B = I + adj(A) + (adj A)
2
+…+
(adj A)
10
. Then, the sum of all the elements of the
matrix B is :
(1) –110 (2) 22
(3) –88 (4) –124
Ans. (3)
Sol. Adj(A) =
?M ????
????
????
1 2
0 1
(AdjA)
2
=
?M ????
????
????
1 4
0 1
|
|
?H ?I ?M ????
?]????
????
10
1 20
AdjA
0 1
?M ?M ?M ?? ?? ?? ?? ?? ?? ?? ?? ?] ?K ?K ?K ?K ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 1 0 1 2 1 4 1 20
B ...
0 1 0 1 0 1 0 1
?M ????
?]????
????
11 110
B
0 11
?? sum of elements of B
= –88
7. The value of
?H ?I ?? ?K ?? ?K ?K ?? ?? ?K ?? ?K ?K ?? 2
2 2
2 2 2
1 2 2 3 ... 100 101
1 2 2 3 ... 100 101
is
(1)
306
305
(2)
305
301
(3)
32
31
(4)
31
30
Ans. (2)
Sol.
?H ?I ?H ?I ?H ?I ?] ?] ?K ?? ?K ?? ?K ?K ?? ?] ?? ?K ?? ?K ?K ?? ?K ?? ?? 100
2
2
2 2
r 1
2 2 2 100
2
r 1
r r 1
1 2 2 3 ... 100 101
1 2 2 3 ... 100 101
r r 1
?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?] ?] ????
?K ?K ?K ?K ?????K?K
?K?K
????
????
?]?]
???? ?K ?K ?K ?K ?K ????
????
?? ?? 2
100
3 2
r 1
100 2
3 2
r 1
n n 1 2.n n 1 2n 1 n n 1
r 2r r
2 6 2
n n 1 n n 1 2n 1
r r
2 6
?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ???? ?K?K
?K ?K ?K ????
????
?] ???? ?K ?K ?K ?K ????
????
n n 1 n n 1
2
. 2n 1 1
2 2 3
n n 1 n n 1 2n 1
2 2 3
;Put n = 100
?H ?I ?H ?I ?K?K
?] ?] ?] ?? ?K 100 101
2
201 1
5185 305
2 3
100 101 201
5117 301
2 3
8. Let ?H ?I ?H ?I ?H ?I ?] ?K ?M ?? ?? x
t
0
f x t sin 1 e dt,x .
Then
?H ?I ?? 3
x 0
f x
lim
x
is equal to
(1)
1
6
(2) ?M 1
6
(3) ?M 2
3
(4)
2
3
Ans. (2)
Sol.
?H ?I ?? 3
x 0
f x
lim
x
Using L Hopital Rule.
?H ?I ?H ?I ????
?K?M
?] x
2 2
x 0 x 0
x sin 1 e
f ' x
lim lim
3x 3x
(Again L Hopital)
Using L.H. Rule
?H ?I ?H ?I ?H ?I ??????
?M ?M ?M ?K ?M ????
?] x x x x x
x 0
sin 1 e e .e cos 1 e .e
lim
6
?]?M
1
6
9. The area (in sq. units) of the region described by
{(x,y) : y
2
< 2x, and y > 4x –1} is
(1)
11
32
(2)
8
9
(3)
11
12
(4)
9
32
Ans. (4)
Sol.
Q
1
P
y
x
0
–1/2
(0,–1)
y'
x'
(1/4,0
Shaded area
?H ?I ?M?]?M
?? 1
Right Left
1
2
x x dy
?] ?]?M
?] ?] ?M 2
y 2x
y 4x 1 Solve
1
y 1,y
2
Shaded area
?M ????
?K ?]?M
????
????
?? 1 2
1
2
y 1 y
dy
4 2
?M ???? ????
?] ?K ?M ?] ???? ????
????
???? ????
1
2 3
1
2
1 y y 9
y
4 2 6 32
10. The area (in sq. units) of the region
?H ?I ?H ?I ?H ?I ?? ?? ?] ?? ?M ?? ?K ?K ?M ?? ?? S z ; z 1 2; z z i z z 2,lm z 0
is
(1)
?? 7
3
(2)
?? 3
2
(3)
?? 17
8
(4)
?? 7
4
Ans. (2)
Sol. Put z = x + iy
?H ?I ?M ?? ?? ?M ?K ?? 2
2
z 1 2 x 1 y 4 …(1)
?H ?I ?H ?I ?H ?I ?K ?K ?M ?? ?? ?K ?? z z i z z 2 2x i 2iy 2
?? ?M ?? x y 1 …(2)
Im(z) > 0 ?? y > 0 …(3)
(–3,0) (1,0) (5,0)
x–y=1
?? /4
Required area
= Area of semi-circle – area of sector A
?H ?I ?? ???M
2 1
2
2 2
?? ?] 3
2
11. If the value of the integral
?M ?? ?K ?? 1
x
1
cos x
dx
1 3
is
?? 2
.
Then, a value of ?? is
(1)
?? 6
(2)
?? 2
(3)
?? 3
(4)
?? 4
Ans. (2)
Sol. Let
?K ?M ?? ?] ?K ?? 1
x
1
cos x
I dx
1 3
…(I)
?K ?M ?M ?? ?] ?K ?? 1
x
1
cos x
I dx
1 3
?H ?I ?H ?I ????
?] ?K ?M ????
????
????
????
b b
a a
using f x dx f a b x dx …(II)
Add (1) and (II)
?H ?I ?H ?I ?K ?M ?] ?? ?] ?? ????
1 1
1 0
2I cos x dx 2 cos x dx
?H ?I ?? ?]?]
????
sin 2
I given
?|
?? ???]
2
12. Let ?H ?I ?] ?M ?K ?M f x 3 x 2 4 x be a real valued
function. If ?? and ?? are respectively the minimum
and the maximum values of f, then ?? 2
+ 2 ?? 2
is
equal to
(1) 44 (2) 42
(3) 24 (4) 38
Ans. (2)
Sol. f(x) = 3 x 2 4 x ?M ?K ?M
x – 2 ?? 0 & 4 – x ?? 0
?| x ?? [2, 4]
Let x = 2sin
2
?? + 4cos
2
??
?| f(x) = 3 2 cos 2 sin ?? ?K ??
?| 2 3 2 cos 2 sin 9 2 2 ?? ?? ?K ?? ?? ?? ?K
2 3 2 cos 2 sin 20 ?? ?? ?K ?? ??
?| ?? = 2 ?? = 20
?? 2
+ 2 ?? 2
= 2 + 40 = 42
13. If the coefficients of x
4
, x
5
and x
6
in the expansion
of (1 + x)
n
are in the arithmetic progression, then
the maximum value of n is :
(1) 14 (2) 21
(3) 28 (4) 7
Ans. (1)
Sol. Coeff. of x
4
=
n
C
4
Coeff. of x
5
=
n
C
5
Coeff. of x
6
=
n
C
6
n
C
4
,
n
C
5
,
n
C
6
…. AP
2.
n
C
5
=
n
C
4
+
n
C
6
n n
6 4
n n
5 5
C C
2
C C
?]?K
n
r
n
r 1
C n r 1
r C
?M????
?M?K ????
?]????
????
????
5 n 5
2
n 4 6
?M ?]?K
?M
12(n – 4) = 30 + n
2
– 9n + 20
n
2
– 21n + 98 = 0
(n – 14) (n – 7) = 0
n
max
= 14 n
min
= 7
14. Consider a hyperbola H having centre at the origin
and foci and the x-axis. Let C
1
be the circle
touching the hyperbola H and having the centre at
the origin. Let C
2
be the circle touching the
hyperbola H at its vertex and having the centre at
one of its foci. If areas (in sq. units) of C
1
and C
2
are 36 ?? and 4 ?? , respectively, then the length (in
units) of latus rectum of H is
(1)
28
3
(2)
14
3
(3)
10
3
(4)
11
3
Ans. (1)
Page 5
FINAL JEE –MAIN EXAMINATION – APRIL, 2024
(Held On Thursday 04
th
April, 2024) TIME : 3 : 00 PM to 6 : 00 PM
MATHEMATICS TEST PAPER WITH SOLUTION
SECTION-A
1. If the function ?H ?I ?? ?M ?M ?K ?? ?? ?] ?M?K ?? ?? ?] ?? x x x
e e
72 9 8 1
, x 0
f x
2 1 cosx
a log 2log 3 , x 0
is continuous at x = 0, then the value of a
2
is equal
to
(1) 968 (2) 1152
(3) 746 (4) 1250
Ans. (2)
Sol. ?H ?I ?? ?] x 0
lim f x a n2 n3
?H ?I ?H ?I ????
?M?M
?M ?M ?K ?] ?M ?K ?M ?K x x
x x x
n 0 x 0
8 1 9 1
72 9 8 1
lim lim
2 1 cosx 2 1 cosx
?H ?I ?? ?? ?? ?? ?? ?? ?? ?M?M
?K?K
?? ?? ?? ?? ?? ?? ?M ?? ?? ?? ?? ?? ?? x x 2
n 0
8 1 9 1 x
lim 2 1 cosx
x x 1 cosx
?| ?? ?? ?? ?] n8 n9 2 2 2 24 2 n2 n3
?| a = 24 2 , a
2
= 576 × 2 = 1152
2. If ?? > 0, let ?? be the angle between the vectors
?] ?K ?? ?Mˆˆ ˆ
a i j 3k and ?] ?M ?K ˆˆ ˆ
b 3i j 2k . If the vectors
?K a b and ?M a b are mutually perpendicular, then
the value of (14 cos ?? )
2
is equal to
(1) 25 (2) 20
(3) 50 (4) 40
Ans. (1)
Sol.
?H ?I ?H ?I ?K ?M ?] a b . a b 0 , ?? ?@?^ 0
?M?]
2
2
a b 0 ?? 1 + ?? 2
+ 9 = 9 + 1 + 4
?| ?? = 2,
?M ?M ?? ?M ?? ?] ?] a b 3 6
cos
a . b 14. 14
14cos ?? = 3 – 8 = –5
?| (14 cos ?? )
2
= 25
3. Let C be a circle with radius 10 units and centre
at the origin. Let the line x + y = 2 intersects the
circle C at the points P and Q. Let MN be a chord
of C of length 2 unit and slope –1. Then, a distance
(in units) between the chord PQ and the chord MN
is
(1) ?M 2 3 (2) ?M 3 2
(3) ?M 2 1 (4) ?K 2 1
Ans. (2)
M
N
O
A
10
C : x
2
+ y
2
= 10
AN = ?] MN
1
2
?| In ?d OAN ?? (ON)
2
= (OA)
2
+ (AN)
2
10 = (OA)
2
+ 1 ?? ?@ OA = 3
Perpendicular distance of center from
?K?M
?]?]
0 0 2
PQ 2
2
Perpendicular distance between MN and
?]?K PQ OA 2 or ?M OA 2
?]?K3 2 or ?M 3 2
4. Let a relation R on ?? be defined as :
(x
1
,y
1
) R(x
2
,y
2
) if and only if x
1
< x
2
or y
1
< y
2
Consider the two statements :
(I) R is reflexive but not symmetric.
(II) R is transitive
Then which one of the following is true ?
(1) Only (II) is correct.
(2) Only (I) is correct.
(3) Both (I) and (II) are correct.
(4) Neither (I) nor (II) is correct.
Ans. (2)
Sol. All ((x
1
y
1
), (x
1
,y
1
)) are in R where
x
1
, y
1
?? N ?| R is reflexive
((1,1), (2,3)) ?? R but ((2,3), (1,1)) ?? R
?| R is not symmetric
((2,4), (3,3)) ?? R and ((3,3), (1,3)) ?? R but ((2,4),
(1,3)) ?? R
?| R is not transitive
5. Let three real numbers a,b,c be in arithmetic
progression and a + 1, b, c + 3 be in geometric
progression. If a > 10 and the arithmetic mean of
a,b and c is 8, then the cube of the geometric mean
of a,b and c is
(1) 120 (2) 312
(3) 316 (4) 128
Ans. (1)
Sol. 2b = a + c, b
2
= (a + 1) (c + 3),
?K?K
?] ?? ?] ?K ?] a b c
8 b 8,a c 16
3
64 = (a + 1) (19 – a) = 19 + 18a – a
2
a
2
– 18a – 45 = 0 ?? (a – 15) (a + 3) = 0, (a > 10)
a = 15, c = 1, b = 8
((abc)
1/3
)
3
= abc = 120
6. Let
????
?]????
????
1 2
A
0 1
and B = I + adj(A) + (adj A)
2
+…+
(adj A)
10
. Then, the sum of all the elements of the
matrix B is :
(1) –110 (2) 22
(3) –88 (4) –124
Ans. (3)
Sol. Adj(A) =
?M ????
????
????
1 2
0 1
(AdjA)
2
=
?M ????
????
????
1 4
0 1
|
|
?H ?I ?M ????
?]????
????
10
1 20
AdjA
0 1
?M ?M ?M ?? ?? ?? ?? ?? ?? ?? ?? ?] ?K ?K ?K ?K ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? 1 0 1 2 1 4 1 20
B ...
0 1 0 1 0 1 0 1
?M ????
?]????
????
11 110
B
0 11
?? sum of elements of B
= –88
7. The value of
?H ?I ?? ?K ?? ?K ?K ?? ?? ?K ?? ?K ?K ?? 2
2 2
2 2 2
1 2 2 3 ... 100 101
1 2 2 3 ... 100 101
is
(1)
306
305
(2)
305
301
(3)
32
31
(4)
31
30
Ans. (2)
Sol.
?H ?I ?H ?I ?H ?I ?] ?] ?K ?? ?K ?? ?K ?K ?? ?] ?? ?K ?? ?K ?K ?? ?K ?? ?? 100
2
2
2 2
r 1
2 2 2 100
2
r 1
r r 1
1 2 2 3 ... 100 101
1 2 2 3 ... 100 101
r r 1
?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?] ?] ????
?K ?K ?K ?K ?????K?K
?K?K
????
????
?]?]
???? ?K ?K ?K ?K ?K ????
????
?? ?? 2
100
3 2
r 1
100 2
3 2
r 1
n n 1 2.n n 1 2n 1 n n 1
r 2r r
2 6 2
n n 1 n n 1 2n 1
r r
2 6
?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ?H ?I ???? ?K?K
?K ?K ?K ????
????
?] ???? ?K ?K ?K ?K ????
????
n n 1 n n 1
2
. 2n 1 1
2 2 3
n n 1 n n 1 2n 1
2 2 3
;Put n = 100
?H ?I ?H ?I ?K?K
?] ?] ?] ?? ?K 100 101
2
201 1
5185 305
2 3
100 101 201
5117 301
2 3
8. Let ?H ?I ?H ?I ?H ?I ?] ?K ?M ?? ?? x
t
0
f x t sin 1 e dt,x .
Then
?H ?I ?? 3
x 0
f x
lim
x
is equal to
(1)
1
6
(2) ?M 1
6
(3) ?M 2
3
(4)
2
3
Ans. (2)
Sol.
?H ?I ?? 3
x 0
f x
lim
x
Using L Hopital Rule.
?H ?I ?H ?I ????
?K?M
?] x
2 2
x 0 x 0
x sin 1 e
f ' x
lim lim
3x 3x
(Again L Hopital)
Using L.H. Rule
?H ?I ?H ?I ?H ?I ??????
?M ?M ?M ?K ?M ????
?] x x x x x
x 0
sin 1 e e .e cos 1 e .e
lim
6
?]?M
1
6
9. The area (in sq. units) of the region described by
{(x,y) : y
2
< 2x, and y > 4x –1} is
(1)
11
32
(2)
8
9
(3)
11
12
(4)
9
32
Ans. (4)
Sol.
Q
1
P
y
x
0
–1/2
(0,–1)
y'
x'
(1/4,0
Shaded area
?H ?I ?M?]?M
?? 1
Right Left
1
2
x x dy
?] ?]?M
?] ?] ?M 2
y 2x
y 4x 1 Solve
1
y 1,y
2
Shaded area
?M ????
?K ?]?M
????
????
?? 1 2
1
2
y 1 y
dy
4 2
?M ???? ????
?] ?K ?M ?] ???? ????
????
???? ????
1
2 3
1
2
1 y y 9
y
4 2 6 32
10. The area (in sq. units) of the region
?H ?I ?H ?I ?H ?I ?? ?? ?] ?? ?M ?? ?K ?K ?M ?? ?? S z ; z 1 2; z z i z z 2,lm z 0
is
(1)
?? 7
3
(2)
?? 3
2
(3)
?? 17
8
(4)
?? 7
4
Ans. (2)
Sol. Put z = x + iy
?H ?I ?M ?? ?? ?M ?K ?? 2
2
z 1 2 x 1 y 4 …(1)
?H ?I ?H ?I ?H ?I ?K ?K ?M ?? ?? ?K ?? z z i z z 2 2x i 2iy 2
?? ?M ?? x y 1 …(2)
Im(z) > 0 ?? y > 0 …(3)
(–3,0) (1,0) (5,0)
x–y=1
?? /4
Required area
= Area of semi-circle – area of sector A
?H ?I ?? ???M
2 1
2
2 2
?? ?] 3
2
11. If the value of the integral
?M ?? ?K ?? 1
x
1
cos x
dx
1 3
is
?? 2
.
Then, a value of ?? is
(1)
?? 6
(2)
?? 2
(3)
?? 3
(4)
?? 4
Ans. (2)
Sol. Let
?K ?M ?? ?] ?K ?? 1
x
1
cos x
I dx
1 3
…(I)
?K ?M ?M ?? ?] ?K ?? 1
x
1
cos x
I dx
1 3
?H ?I ?H ?I ????
?] ?K ?M ????
????
????
????
b b
a a
using f x dx f a b x dx …(II)
Add (1) and (II)
?H ?I ?H ?I ?K ?M ?] ?? ?] ?? ????
1 1
1 0
2I cos x dx 2 cos x dx
?H ?I ?? ?]?]
????
sin 2
I given
?|
?? ???]
2
12. Let ?H ?I ?] ?M ?K ?M f x 3 x 2 4 x be a real valued
function. If ?? and ?? are respectively the minimum
and the maximum values of f, then ?? 2
+ 2 ?? 2
is
equal to
(1) 44 (2) 42
(3) 24 (4) 38
Ans. (2)
Sol. f(x) = 3 x 2 4 x ?M ?K ?M
x – 2 ?? 0 & 4 – x ?? 0
?| x ?? [2, 4]
Let x = 2sin
2
?? + 4cos
2
??
?| f(x) = 3 2 cos 2 sin ?? ?K ??
?| 2 3 2 cos 2 sin 9 2 2 ?? ?? ?K ?? ?? ?? ?K
2 3 2 cos 2 sin 20 ?? ?? ?K ?? ??
?| ?? = 2 ?? = 20
?? 2
+ 2 ?? 2
= 2 + 40 = 42
13. If the coefficients of x
4
, x
5
and x
6
in the expansion
of (1 + x)
n
are in the arithmetic progression, then
the maximum value of n is :
(1) 14 (2) 21
(3) 28 (4) 7
Ans. (1)
Sol. Coeff. of x
4
=
n
C
4
Coeff. of x
5
=
n
C
5
Coeff. of x
6
=
n
C
6
n
C
4
,
n
C
5
,
n
C
6
…. AP
2.
n
C
5
=
n
C
4
+
n
C
6
n n
6 4
n n
5 5
C C
2
C C
?]?K
n
r
n
r 1
C n r 1
r C
?M????
?M?K ????
?]????
????
????
5 n 5
2
n 4 6
?M ?]?K
?M
12(n – 4) = 30 + n
2
– 9n + 20
n
2
– 21n + 98 = 0
(n – 14) (n – 7) = 0
n
max
= 14 n
min
= 7
14. Consider a hyperbola H having centre at the origin
and foci and the x-axis. Let C
1
be the circle
touching the hyperbola H and having the centre at
the origin. Let C
2
be the circle touching the
hyperbola H at its vertex and having the centre at
one of its foci. If areas (in sq. units) of C
1
and C
2
are 36 ?? and 4 ?? , respectively, then the length (in
units) of latus rectum of H is
(1)
28
3
(2)
14
3
(3)
10
3
(4)
11
3
Ans. (1)
Sol. Let H :
2 2
2 2
x y
1
a b
?M?] (b
2
= a
2
(e
2
– 1))
?| eq
n
of C
1
= x
2
+ y
2
= a
2
Ar. = 36 ??
?? a
2
= 36 ??
a = 6
Now radius of C
2
can be a(e – 1) or a(e + 1)
for r = a(e – 1) for r = a(e + 1)
Ar. = 4 ?? ?? r
2
= 4 ??
?? a
2
(e – 1)
2
= 4 ?? a
2
(e + 1)
2
= 4
36 ?? (e – 1)
2
= 4 ?? 36(e + 1)
2
= 4
e – 1 =
1
3
e + 1 =
1
3
e =
4
3
2
3
?M
Not possible
?| b
2
= 36
16
1
9
????
?M ????
????
= 28
?| LR =
2
2b 2 28 28
a 6 3
?? ?]?]
15. If the mean of the following probability
distribution of a random variable X;
?H ?I ?K X 0 2 4 6 8
P X a 2a a b 2b 3b
is
46
9
, then the variance of the distribution is
(1)
581
81
(2)
566
81
(3)
173
27
(4)
151
27
Ans. (2)
Sol.
i
P 1 ?] ??
a + 2a + a + b + 2b + 3b = 1
4a + 6b = 1 …. (I)
E(x) = mean =
46
9
i i
46
P X
9
?] ?? ?? 4a + 4a + 4b + 12b + 24b =
46
9
8a + 40b =
46
9
4a + 20b =
23
9
…. (II)
Subtract (I) from (II) we get
b =
1
9
& a =
1
12
Variance = E(x
i
2
) – E(x
i
)
2
E(x
i
2
) = 0
2
× 9
2
+ 2
2
× 2a + 4
2
(a + b) + 6
2
(2b) + 8
2
(3b)
= 24a + 280b
Put a =
1
12
b =
1
9
E(x
i
2
) = 2 +
280 298
9 9
?]
?| ?@?? 2
= E(x
i
2
) – E(x
i
)
2
2
298 46
9 9
????
?]?M
????
????
2
298 2116
9 81
?? ?] ?M
566
81
?]
16. Let PQ be a chord of the parabola y
2
= 12x and the
midpoint of PQ be at (4,1). Then, which of the
following point lies on the line passing through the
points P and Q ?
(1) (3,–3) (2)
????
?M ????
????
3
, 16
2
(3) ?M (2, 9) (4)
????
?M ????
????
1
, 20
2
Ans. (4)
Sol.
Q
(4,1
P
T = S
1
y – 6(x + 4)
= 1 – 48
6x – y = 23
Option 4
????
?M ????
????
1
, 20
2
will satisfy
Read More