NEET Exam  >  NEET Notes  >  Chemistry Class 11  >  Cheat sheet: Chemical Bonding and Molecular Structure

Cheat sheet: Chemical Bonding and Molecular Structure | Chemistry Class 11 - NEET PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Chemical Bonding and Molecular Structure Cheat
Sheet (Class 11 CBSE)
1 Introduction to Chemical Bonding
• Chemical Bond : Attr active force holding atoms, ions, etc., together in a molecule or com-
pound.
• Wh y Atoms Combine : T o achieve stability b y attaining noble gas electron configur ation
(lower energy state).
• K ey Theories :
– K össel-Lewis Approach
– V alence Shell Electron Pair Repulsion (VSEPR) Theory
– V alence Bond (VB) Theory
– Molecular Orbital (MO) Theory
2 K ö ssel-Lewis Approach
• Lewis S ymbols : Dots around element symbol represent valence electrons (e.g., Na· , Cl:· ).
• Octet Rule : At oms combine to achieve 8 electrons in their valence shell (noble gas config-
ur ation).
– Ionic Bond : Electron tr ansfer (e.g., Na? Na
+
+ e
-
; Cl + e
-
? Cl
-
; forms NaCl).
– Covalent Bond : Electron sharing (e.g., Cl
2
: Cl:Cl, sharing one electron pair).
• Limitations of Octet Rule :
– Incomplete Octet : e.g., LiCl, BeH
2
, BCl
3
(centr al atom < 8 electrons).
– Odd-Electron Molecules : e.g., NO , NO
2
(odd number of electrons).
– Expanded Octet : e.g., PF
5
, SF
6
(centr al atom > 8 electrons due to d-orbitals).
3 Types of Bonds
• Ionic (Electrovalent) Bond :
– F ormed b y electron tr ansfer between electropositive (low ionization enthalp y) and
electronegative (high electron gain enthalp y) elements.
– Stabilized b y lattice enthalp y (energy to separ ate 1 mole of ionic solid into gaseous ions,
e.g., NaCl: 788 kJ/mol).
• Covalent Bond :
– F ormed b y sharing electron pairs (single, double, or triple bonds).
– Single Bond : One shared pair (e.g., H
2
).
– Double Bond : Two shared pairs (e.g., O
2
, CO
2
).
1
Page 2


Chemical Bonding and Molecular Structure Cheat
Sheet (Class 11 CBSE)
1 Introduction to Chemical Bonding
• Chemical Bond : Attr active force holding atoms, ions, etc., together in a molecule or com-
pound.
• Wh y Atoms Combine : T o achieve stability b y attaining noble gas electron configur ation
(lower energy state).
• K ey Theories :
– K össel-Lewis Approach
– V alence Shell Electron Pair Repulsion (VSEPR) Theory
– V alence Bond (VB) Theory
– Molecular Orbital (MO) Theory
2 K ö ssel-Lewis Approach
• Lewis S ymbols : Dots around element symbol represent valence electrons (e.g., Na· , Cl:· ).
• Octet Rule : At oms combine to achieve 8 electrons in their valence shell (noble gas config-
ur ation).
– Ionic Bond : Electron tr ansfer (e.g., Na? Na
+
+ e
-
; Cl + e
-
? Cl
-
; forms NaCl).
– Covalent Bond : Electron sharing (e.g., Cl
2
: Cl:Cl, sharing one electron pair).
• Limitations of Octet Rule :
– Incomplete Octet : e.g., LiCl, BeH
2
, BCl
3
(centr al atom < 8 electrons).
– Odd-Electron Molecules : e.g., NO , NO
2
(odd number of electrons).
– Expanded Octet : e.g., PF
5
, SF
6
(centr al atom > 8 electrons due to d-orbitals).
3 Types of Bonds
• Ionic (Electrovalent) Bond :
– F ormed b y electron tr ansfer between electropositive (low ionization enthalp y) and
electronegative (high electron gain enthalp y) elements.
– Stabilized b y lattice enthalp y (energy to separ ate 1 mole of ionic solid into gaseous ions,
e.g., NaCl: 788 kJ/mol).
• Covalent Bond :
– F ormed b y sharing electron pairs (single, double, or triple bonds).
– Single Bond : One shared pair (e.g., H
2
).
– Double Bond : Two shared pairs (e.g., O
2
, CO
2
).
1
– Triple Bond : Three shared pairs (e.g., N
2
, C
2
H
2
).
• Hydrogen Bond :
– W eak bond between H (bonded to F , O , N) and another electronegative atom (F , O , N).
– Intermolecular : Between different molecules (e.g., H
2
O , HF).
– Intr amolecular : Within the same molecule (e.g., o-nitrophenol).
– Stronger than van der W aals forces but weak er than covalent/ionic bonds.
4 Bond Par ameters
• Bond Length : Equilibrium distance between nuclei of bonded atoms (e.g., H
2
: 74 pm, C=C:
133 pm).
– Covalent r adius = half the distance between two similar atoms in a covalent bond.
• Bond Angle : Angle between orbitals containing bonding electron pairs (e.g., H
2
O: 104.5
?
).
• Bond Enthalp y : Energy to break 1 mole of a bond (e.g., H
2
: 435.8 kJ/mol, N
2
: 946 kJ/mol).
– Higher bond order? higher bond enthalp y , shorter bond length.
• Bond Order : Number of bonds between atoms (e.g., H
2
: 1, O
2
: 2, N
2
: 3).
• Dipole Moment (?? ) : Product of charge and distance (?? = ??× ?? , in Deb ye, 1D = 3.33564 ×
10
-30
C· m).
– Polar Covalent Bond : Unequal electron sharing (e.g., HF: H
+??
–F
-??
).
– Nonpolar Covalent Bond : Equal sharing (e.g., H
2
, O
2
).
– Net dipole depends on molecular geometry (e.g., CO
2
: linear , ?? = 0 ; H
2
O: bent, ?? = 1.85
D).
5 VSE PR Theory
• Principle : Electron pairs (bond pairs, lone pairs) around centr al atom repel each other ,
minimizing repulsion to determine molecular geometry .
• Repulsion Order : Lone pair-lone pair (lp-lp) > Lone pair-bond pair (lp-bp) > Bond pair-
bond pair (bp-bp).
• Geometries (No Lone Pairs) :
– 2 electron pairs: Linear (e.g., BeCl
2
, 180
?
).
– 3 electron pairs: Trigonal planar (e.g., BCl
3
, 120
?
).
– 4 electron pairs: T etr ahedr al (e.g., CH
4
, 109.5
?
).
– 5 electron pairs: Trigonal bip yr amidal (e.g., PCl
5
, 120
?
/90
?
).
– 6 electron pairs: Octahedr al (e.g., SF
6
, 90
?
).
• Geometries (With Lone Pairs) :
– AB
2
E: Bent (e.g., SO
2
,~ 119.5
?
).
– AB
3
E: Trigonal p yr amidal (e.g., NH
3
, 107
?
).
– AB
2
E
2
: Bent (e.g., H
2
O , 104.5
?
).
– AB
4
E: See-saw (e.g., SF
4
).
– AB
3
E
2
: T-shaped (e.g., ClF
3
).
2
Page 3


Chemical Bonding and Molecular Structure Cheat
Sheet (Class 11 CBSE)
1 Introduction to Chemical Bonding
• Chemical Bond : Attr active force holding atoms, ions, etc., together in a molecule or com-
pound.
• Wh y Atoms Combine : T o achieve stability b y attaining noble gas electron configur ation
(lower energy state).
• K ey Theories :
– K össel-Lewis Approach
– V alence Shell Electron Pair Repulsion (VSEPR) Theory
– V alence Bond (VB) Theory
– Molecular Orbital (MO) Theory
2 K ö ssel-Lewis Approach
• Lewis S ymbols : Dots around element symbol represent valence electrons (e.g., Na· , Cl:· ).
• Octet Rule : At oms combine to achieve 8 electrons in their valence shell (noble gas config-
ur ation).
– Ionic Bond : Electron tr ansfer (e.g., Na? Na
+
+ e
-
; Cl + e
-
? Cl
-
; forms NaCl).
– Covalent Bond : Electron sharing (e.g., Cl
2
: Cl:Cl, sharing one electron pair).
• Limitations of Octet Rule :
– Incomplete Octet : e.g., LiCl, BeH
2
, BCl
3
(centr al atom < 8 electrons).
– Odd-Electron Molecules : e.g., NO , NO
2
(odd number of electrons).
– Expanded Octet : e.g., PF
5
, SF
6
(centr al atom > 8 electrons due to d-orbitals).
3 Types of Bonds
• Ionic (Electrovalent) Bond :
– F ormed b y electron tr ansfer between electropositive (low ionization enthalp y) and
electronegative (high electron gain enthalp y) elements.
– Stabilized b y lattice enthalp y (energy to separ ate 1 mole of ionic solid into gaseous ions,
e.g., NaCl: 788 kJ/mol).
• Covalent Bond :
– F ormed b y sharing electron pairs (single, double, or triple bonds).
– Single Bond : One shared pair (e.g., H
2
).
– Double Bond : Two shared pairs (e.g., O
2
, CO
2
).
1
– Triple Bond : Three shared pairs (e.g., N
2
, C
2
H
2
).
• Hydrogen Bond :
– W eak bond between H (bonded to F , O , N) and another electronegative atom (F , O , N).
– Intermolecular : Between different molecules (e.g., H
2
O , HF).
– Intr amolecular : Within the same molecule (e.g., o-nitrophenol).
– Stronger than van der W aals forces but weak er than covalent/ionic bonds.
4 Bond Par ameters
• Bond Length : Equilibrium distance between nuclei of bonded atoms (e.g., H
2
: 74 pm, C=C:
133 pm).
– Covalent r adius = half the distance between two similar atoms in a covalent bond.
• Bond Angle : Angle between orbitals containing bonding electron pairs (e.g., H
2
O: 104.5
?
).
• Bond Enthalp y : Energy to break 1 mole of a bond (e.g., H
2
: 435.8 kJ/mol, N
2
: 946 kJ/mol).
– Higher bond order? higher bond enthalp y , shorter bond length.
• Bond Order : Number of bonds between atoms (e.g., H
2
: 1, O
2
: 2, N
2
: 3).
• Dipole Moment (?? ) : Product of charge and distance (?? = ??× ?? , in Deb ye, 1D = 3.33564 ×
10
-30
C· m).
– Polar Covalent Bond : Unequal electron sharing (e.g., HF: H
+??
–F
-??
).
– Nonpolar Covalent Bond : Equal sharing (e.g., H
2
, O
2
).
– Net dipole depends on molecular geometry (e.g., CO
2
: linear , ?? = 0 ; H
2
O: bent, ?? = 1.85
D).
5 VSE PR Theory
• Principle : Electron pairs (bond pairs, lone pairs) around centr al atom repel each other ,
minimizing repulsion to determine molecular geometry .
• Repulsion Order : Lone pair-lone pair (lp-lp) > Lone pair-bond pair (lp-bp) > Bond pair-
bond pair (bp-bp).
• Geometries (No Lone Pairs) :
– 2 electron pairs: Linear (e.g., BeCl
2
, 180
?
).
– 3 electron pairs: Trigonal planar (e.g., BCl
3
, 120
?
).
– 4 electron pairs: T etr ahedr al (e.g., CH
4
, 109.5
?
).
– 5 electron pairs: Trigonal bip yr amidal (e.g., PCl
5
, 120
?
/90
?
).
– 6 electron pairs: Octahedr al (e.g., SF
6
, 90
?
).
• Geometries (With Lone Pairs) :
– AB
2
E: Bent (e.g., SO
2
,~ 119.5
?
).
– AB
3
E: Trigonal p yr amidal (e.g., NH
3
, 107
?
).
– AB
2
E
2
: Bent (e.g., H
2
O , 104.5
?
).
– AB
4
E: See-saw (e.g., SF
4
).
– AB
3
E
2
: T-shaped (e.g., ClF
3
).
2
6 V a lence Bond (VB) Theory
• Principle : Coval ent bond forms b y overlap of half-filled atomic orbitals with opposite spins.
• Types of Overlap :
– Sigma (?? ) Bond : Head-on overlap (s-s, s-p, p-p).
– Pi (?? ) Bond : Sidewa ys overlap (p-p).
– Sigma bonds are stronger due to greater overlap.
• Hybridisation : Mixing of atomic orbitals to form equivalent h ybrid orbitals.
– sp : Linear , 180
?
(e.g., BeCl
2
).
– sp
2
: Trigonal planar , 120
?
(e.g., BCl
3
).
– sp
3
: T etr ahedr al, 109.5
?
(e.g., CH
4
, NH
3
, H
2
O).
– sp
3
d : Trigonal bip yr amidal (e.g., PCl
5
, axial bonds longe r due to more repulsion).
– sp
3
d
2
: Octahedr al (e.g., SF
6
).
• Examples :
– C
2
H
6
: sp
3
-sp
3
?? bonds (C–C, C–H).
– C
2
H
4
: sp
2
-sp
2
?? bond (C–C), ?? bond (C=C), sp
2
-s ?? bonds (C–H).
– C
2
H
2
: sp-sp ?? bond (C–C), two ?? bonds (C= C), sp-s ?? bonds (C–H).
7 Molecular Orbital (MO) Theory
• Principle : Atomic orbitals combine to form molecular orbitals (bonding: lower energy;
antibonding: higher energy).
• Linear Combination of Atomic Orbitals (LCA O) :
– Bonding MO (?? , ?? ): Constructive interference (e.g., ?? 1s = ??
??
+??
??
).
– Antibonding MO (??
*
, ??
*
): Destructive interference (e.g., ??
*
1s = ??
??
-??
??
).
• Conditions for Orbital Combination :
– Similar energy .
– Same symmetry .
– Maximum overlap.
• Energy Order (O
2
, F
2
) : ?? 1s <??
*
1s <?? 2s <??
*
2s <?? 2p
??
<?? 2p
??
=?? 2p
??
<??
*
2p
??
=??
*
2p
??
<??
*
2p
??
.
• Bond Order :
1
2
(N
??
– N
??
), where N
??
= electrons in bonding MOs, N
??
= electrons in antibonding
MOs.
• Examples :
– H
2
: (?? 1s)
2
, bond order = 1, diamagnetic.
– He
2
: (?? 1s)
2
(??
*
1s)
2
, bond order = 0, unstable.
– O
2
: (?? 1s)
2
(??
*
1s)
2
(?? 2s)
2
(??
*
2s)
2
(?? 2p
??
)
2
(?? 2p
??
)
2
(?? 2p
??
)
2
(??
*
2p
??
)
1
(??
*
2p
??
)
1
, bond order = 2, par a-
magnetic.
• Magnetic Properties : Diamagnetic (all electrons paired), Par amagnetic (unpaired elec-
trons).
3
Page 4


Chemical Bonding and Molecular Structure Cheat
Sheet (Class 11 CBSE)
1 Introduction to Chemical Bonding
• Chemical Bond : Attr active force holding atoms, ions, etc., together in a molecule or com-
pound.
• Wh y Atoms Combine : T o achieve stability b y attaining noble gas electron configur ation
(lower energy state).
• K ey Theories :
– K össel-Lewis Approach
– V alence Shell Electron Pair Repulsion (VSEPR) Theory
– V alence Bond (VB) Theory
– Molecular Orbital (MO) Theory
2 K ö ssel-Lewis Approach
• Lewis S ymbols : Dots around element symbol represent valence electrons (e.g., Na· , Cl:· ).
• Octet Rule : At oms combine to achieve 8 electrons in their valence shell (noble gas config-
ur ation).
– Ionic Bond : Electron tr ansfer (e.g., Na? Na
+
+ e
-
; Cl + e
-
? Cl
-
; forms NaCl).
– Covalent Bond : Electron sharing (e.g., Cl
2
: Cl:Cl, sharing one electron pair).
• Limitations of Octet Rule :
– Incomplete Octet : e.g., LiCl, BeH
2
, BCl
3
(centr al atom < 8 electrons).
– Odd-Electron Molecules : e.g., NO , NO
2
(odd number of electrons).
– Expanded Octet : e.g., PF
5
, SF
6
(centr al atom > 8 electrons due to d-orbitals).
3 Types of Bonds
• Ionic (Electrovalent) Bond :
– F ormed b y electron tr ansfer between electropositive (low ionization enthalp y) and
electronegative (high electron gain enthalp y) elements.
– Stabilized b y lattice enthalp y (energy to separ ate 1 mole of ionic solid into gaseous ions,
e.g., NaCl: 788 kJ/mol).
• Covalent Bond :
– F ormed b y sharing electron pairs (single, double, or triple bonds).
– Single Bond : One shared pair (e.g., H
2
).
– Double Bond : Two shared pairs (e.g., O
2
, CO
2
).
1
– Triple Bond : Three shared pairs (e.g., N
2
, C
2
H
2
).
• Hydrogen Bond :
– W eak bond between H (bonded to F , O , N) and another electronegative atom (F , O , N).
– Intermolecular : Between different molecules (e.g., H
2
O , HF).
– Intr amolecular : Within the same molecule (e.g., o-nitrophenol).
– Stronger than van der W aals forces but weak er than covalent/ionic bonds.
4 Bond Par ameters
• Bond Length : Equilibrium distance between nuclei of bonded atoms (e.g., H
2
: 74 pm, C=C:
133 pm).
– Covalent r adius = half the distance between two similar atoms in a covalent bond.
• Bond Angle : Angle between orbitals containing bonding electron pairs (e.g., H
2
O: 104.5
?
).
• Bond Enthalp y : Energy to break 1 mole of a bond (e.g., H
2
: 435.8 kJ/mol, N
2
: 946 kJ/mol).
– Higher bond order? higher bond enthalp y , shorter bond length.
• Bond Order : Number of bonds between atoms (e.g., H
2
: 1, O
2
: 2, N
2
: 3).
• Dipole Moment (?? ) : Product of charge and distance (?? = ??× ?? , in Deb ye, 1D = 3.33564 ×
10
-30
C· m).
– Polar Covalent Bond : Unequal electron sharing (e.g., HF: H
+??
–F
-??
).
– Nonpolar Covalent Bond : Equal sharing (e.g., H
2
, O
2
).
– Net dipole depends on molecular geometry (e.g., CO
2
: linear , ?? = 0 ; H
2
O: bent, ?? = 1.85
D).
5 VSE PR Theory
• Principle : Electron pairs (bond pairs, lone pairs) around centr al atom repel each other ,
minimizing repulsion to determine molecular geometry .
• Repulsion Order : Lone pair-lone pair (lp-lp) > Lone pair-bond pair (lp-bp) > Bond pair-
bond pair (bp-bp).
• Geometries (No Lone Pairs) :
– 2 electron pairs: Linear (e.g., BeCl
2
, 180
?
).
– 3 electron pairs: Trigonal planar (e.g., BCl
3
, 120
?
).
– 4 electron pairs: T etr ahedr al (e.g., CH
4
, 109.5
?
).
– 5 electron pairs: Trigonal bip yr amidal (e.g., PCl
5
, 120
?
/90
?
).
– 6 electron pairs: Octahedr al (e.g., SF
6
, 90
?
).
• Geometries (With Lone Pairs) :
– AB
2
E: Bent (e.g., SO
2
,~ 119.5
?
).
– AB
3
E: Trigonal p yr amidal (e.g., NH
3
, 107
?
).
– AB
2
E
2
: Bent (e.g., H
2
O , 104.5
?
).
– AB
4
E: See-saw (e.g., SF
4
).
– AB
3
E
2
: T-shaped (e.g., ClF
3
).
2
6 V a lence Bond (VB) Theory
• Principle : Coval ent bond forms b y overlap of half-filled atomic orbitals with opposite spins.
• Types of Overlap :
– Sigma (?? ) Bond : Head-on overlap (s-s, s-p, p-p).
– Pi (?? ) Bond : Sidewa ys overlap (p-p).
– Sigma bonds are stronger due to greater overlap.
• Hybridisation : Mixing of atomic orbitals to form equivalent h ybrid orbitals.
– sp : Linear , 180
?
(e.g., BeCl
2
).
– sp
2
: Trigonal planar , 120
?
(e.g., BCl
3
).
– sp
3
: T etr ahedr al, 109.5
?
(e.g., CH
4
, NH
3
, H
2
O).
– sp
3
d : Trigonal bip yr amidal (e.g., PCl
5
, axial bonds longe r due to more repulsion).
– sp
3
d
2
: Octahedr al (e.g., SF
6
).
• Examples :
– C
2
H
6
: sp
3
-sp
3
?? bonds (C–C, C–H).
– C
2
H
4
: sp
2
-sp
2
?? bond (C–C), ?? bond (C=C), sp
2
-s ?? bonds (C–H).
– C
2
H
2
: sp-sp ?? bond (C–C), two ?? bonds (C= C), sp-s ?? bonds (C–H).
7 Molecular Orbital (MO) Theory
• Principle : Atomic orbitals combine to form molecular orbitals (bonding: lower energy;
antibonding: higher energy).
• Linear Combination of Atomic Orbitals (LCA O) :
– Bonding MO (?? , ?? ): Constructive interference (e.g., ?? 1s = ??
??
+??
??
).
– Antibonding MO (??
*
, ??
*
): Destructive interference (e.g., ??
*
1s = ??
??
-??
??
).
• Conditions for Orbital Combination :
– Similar energy .
– Same symmetry .
– Maximum overlap.
• Energy Order (O
2
, F
2
) : ?? 1s <??
*
1s <?? 2s <??
*
2s <?? 2p
??
<?? 2p
??
=?? 2p
??
<??
*
2p
??
=??
*
2p
??
<??
*
2p
??
.
• Bond Order :
1
2
(N
??
– N
??
), where N
??
= electrons in bonding MOs, N
??
= electrons in antibonding
MOs.
• Examples :
– H
2
: (?? 1s)
2
, bond order = 1, diamagnetic.
– He
2
: (?? 1s)
2
(??
*
1s)
2
, bond order = 0, unstable.
– O
2
: (?? 1s)
2
(??
*
1s)
2
(?? 2s)
2
(??
*
2s)
2
(?? 2p
??
)
2
(?? 2p
??
)
2
(?? 2p
??
)
2
(??
*
2p
??
)
1
(??
*
2p
??
)
1
, bond order = 2, par a-
magnetic.
• Magnetic Properties : Diamagnetic (all electrons paired), Par amagnetic (unpaired elec-
trons).
3
8 Resonance
• Concept : When a single Lewis structure cannot describe a molecule accur ately , multiple
structures (canonical forms) are used, and the a ctual structure is a resonance h ybrid.
• Examples :
– O
3
: Two structures with O–O single and O=O double bonds; h ybrid has equal bond
lengths (128 pm).
– CO
2-
3
: Three structures with one C=O double bond and two C–O single bonds; all C–O
bonds equivalent.
• K ey Points :
– Resonance lowers energy , stabilizing the molecule.
– Canonical forms are h ypothetical; the h ybrid is the actual structure.
9 F ormal Charge
• F ormula : FC = V alence electrons – Non-bonding electrons –
1
2
(Bonding electrons).
• Use : Helps select the most stable Lewis structure (lowest formal charges).
• Example (O
3
) :
– Centr al O: FC = 6 – 2 –
1
2
(6) = +1.
– End O (double bond): FC = 6 – 4 –
1
2
(4) = 0.
– End O (single bond): FC = 6 – 6 –
1
2
(2) = - 1.
10 K ey Examples
• Lewis Structures :
– H
2
S: H–S–H (bent, 2 lone pairs).
– CO
2-
3
: Resonance h ybrid of three structures.
– HCOOH: O=C(OH)–H (C has sp
2
, double bo nd with O).
• VSEPR Shapes :
– BeCl
2
: Linear (sp).
– NH
3
: Trigonal p yr amidal (sp
3
, 1 lone pair).
– H
2
O: Bent (sp
3
, 2 lone pairs).
• MO Configur ations :
– N
2
: Bond order = 3, diamagnetic.
– O
+
2
: Bond order = 2.5, par amagnetic.
– O
-
2
: Bond order = 1.5, par amagnetic.
4
Read More
121 videos|348 docs|74 tests

FAQs on Cheat sheet: Chemical Bonding and Molecular Structure - Chemistry Class 11 - NEET

1. What are the different types of chemical bonds and how do they differ from each other?
Ans. The primary types of chemical bonds are ionic bonds, covalent bonds, and metallic bonds. Ionic bonds form when electrons are transferred from one atom to another, resulting in the attraction between positively and negatively charged ions. Covalent bonds occur when two atoms share one or more pairs of electrons, leading to the formation of molecules. Metallic bonds involve a 'sea of electrons' that are free to move around, which allows metals to conduct electricity and heat. Each type of bond has distinct properties and behaviors that influence the characteristics of the resulting substances.
2. How does molecular geometry affect the properties of substances?
Ans. Molecular geometry, or the three-dimensional arrangement of atoms in a molecule, significantly impacts its physical and chemical properties. For instance, the shape of a molecule affects its polarity, reactivity, phase of matter, color, magnetism, and biological activity. Molecules with different geometries can exhibit vastly different behaviors, even if they contain the same atoms. Understanding molecular geometry is essential for predicting how substances will interact and behave in various environments.
3. What role do electronegativity and polarity play in chemical bonding?
Ans. Electronegativity is a measure of an atom's ability to attract and hold onto electrons in a bond. When two atoms with different electronegativities form a bond, the electron density is unevenly distributed, leading to polarity. A polar bond has a partial positive charge on one end and a partial negative charge on the other, which influences the molecule's overall polarity. This polarity affects solubility, boiling points, and intermolecular forces, making electronegativity a key concept in understanding chemical bonding and molecular interactions.
4. What are resonance structures, and why are they important in understanding molecular stability?
Ans. Resonance structures are different ways of drawing the same molecule that depict the delocalization of electrons. They are used when a single Lewis structure cannot accurately represent the molecule. The true structure of the molecule is a hybrid of all possible resonance forms. Understanding resonance is crucial because it helps explain molecular stability, reactivity, and the distribution of charge within the molecule, leading to a more accurate representation of electronic structure.
5. How do intermolecular forces differ from intramolecular forces, and what is their significance?
Ans. Intramolecular forces are the forces that hold atoms together within a molecule, such as covalent or ionic bonds. Intermolecular forces, on the other hand, are the forces of attraction or repulsion between different molecules. Intermolecular forces, such as hydrogen bonding, dipole-dipole interactions, and London dispersion forces, play a crucial role in determining the physical properties of substances, including boiling and melting points, viscosity, and solubility. Understanding these forces is essential for predicting how substances will behave in different conditions.
Related Searches

MCQs

,

Cheat sheet: Chemical Bonding and Molecular Structure | Chemistry Class 11 - NEET

,

Sample Paper

,

Important questions

,

Objective type Questions

,

Summary

,

past year papers

,

Viva Questions

,

ppt

,

pdf

,

study material

,

Cheat sheet: Chemical Bonding and Molecular Structure | Chemistry Class 11 - NEET

,

Cheat sheet: Chemical Bonding and Molecular Structure | Chemistry Class 11 - NEET

,

Exam

,

video lectures

,

Free

,

Semester Notes

,

mock tests for examination

,

shortcuts and tricks

,

Previous Year Questions with Solutions

,

Extra Questions

,

practice quizzes

;