JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Cheat Sheet: Trigonometric Ratios, Functions & Equations

Cheat Sheet: Trigonometric Ratios, Functions & Equations | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Trigonometric Ratios, Functions, and 
Equations Cheat Sheet 
Trigonometric Ratios 
Definitions 
? sin?: Opposite/Hypotenuse. 
? cos?: Adjacent/Hypotenuse. 
? tan?: Opposite/Adjacent = sin?/cos?. 
? cot?: 1/tan? = cos?/sin?. 
? sec?: 1/cos?. 
? csc?: 1/sin?. 
Standard Angle Values 
? 0° 30° 45° 60° 90° 
sin? 0 1/2 v2/2 v3/2 1 
cos? 1 v3/2 v2/2 1/2 0 
Page 2


Trigonometric Ratios, Functions, and 
Equations Cheat Sheet 
Trigonometric Ratios 
Definitions 
? sin?: Opposite/Hypotenuse. 
? cos?: Adjacent/Hypotenuse. 
? tan?: Opposite/Adjacent = sin?/cos?. 
? cot?: 1/tan? = cos?/sin?. 
? sec?: 1/cos?. 
? csc?: 1/sin?. 
Standard Angle Values 
? 0° 30° 45° 60° 90° 
sin? 0 1/2 v2/2 v3/2 1 
cos? 1 v3/2 v2/2 1/2 0 
? 0° 30° 45° 60° 90° 
tan? 0 v3/3 1 v3 undefine
d 
Signs in Quadrants 
? I: All positive. 
? II: sin, csc positive; others negative. 
? III: tan, cot positive; others negative. 
? IV: cos, sec positive; others negative. 
Relationships 
? sin²? + cos²? = 1. 
? 1 + tan²? = sec²?. 
? 1 + cot²? = csc²?. 
Trigonometric Identities 
Pythagorean Identities 
? sin²? + cos²? = 1. 
? 1 + tan²? = sec²?. 
? 1 + cot²? = csc²?. 
Sum and Difference Identities 
Page 3


Trigonometric Ratios, Functions, and 
Equations Cheat Sheet 
Trigonometric Ratios 
Definitions 
? sin?: Opposite/Hypotenuse. 
? cos?: Adjacent/Hypotenuse. 
? tan?: Opposite/Adjacent = sin?/cos?. 
? cot?: 1/tan? = cos?/sin?. 
? sec?: 1/cos?. 
? csc?: 1/sin?. 
Standard Angle Values 
? 0° 30° 45° 60° 90° 
sin? 0 1/2 v2/2 v3/2 1 
cos? 1 v3/2 v2/2 1/2 0 
? 0° 30° 45° 60° 90° 
tan? 0 v3/3 1 v3 undefine
d 
Signs in Quadrants 
? I: All positive. 
? II: sin, csc positive; others negative. 
? III: tan, cot positive; others negative. 
? IV: cos, sec positive; others negative. 
Relationships 
? sin²? + cos²? = 1. 
? 1 + tan²? = sec²?. 
? 1 + cot²? = csc²?. 
Trigonometric Identities 
Pythagorean Identities 
? sin²? + cos²? = 1. 
? 1 + tan²? = sec²?. 
? 1 + cot²? = csc²?. 
Sum and Difference Identities 
? sin(A ± B) = sinA cosB ± cosA sinB. 
? cos(A ± B) = cosA cosB ± sinA sinB. 
? tan(A ± B) = (tanA ± tanB)/(1 ± tanA tanB). 
Double Angle Identities 
? sin2? = 2sin? cos?. 
? cos2? = cos²? - sin²? = 2cos²? - 1 = 1 - 2sin²?. 
? tan2? = 2tan?/(1 - tan²?). 
Half Angle Identities 
? sin(?/2) = ±v[(1 - cos?)/2]. 
? cos(?/2) = ±v[(1 + cos?)/2]. 
? tan(?/2) = (1 - cos?)/sin? = sin?/(1 + cos?). 
Product-to-Sum Identities 
? sinA sinB = (1/2)[cos(A-B) - cos(A+B)]. 
? cosA cosB = (1/2)[cos(A-B) + cos(A+B)]. 
? sinA cosB = (1/2)[sin(A+B) + sin(A-B)]. 
Sum-to-Product Identities 
? sinA + sinB = 2sin((A+B)/2)cos((A-B)/2). 
? sinA - sinB = 2cos((A+B)/2)sin((A-B)/2). 
? cosA + cosB = 2cos((A+B)/2)cos((A-B)/2). 
? cosA - cosB = -2sin((A+B)/2)sin((A-B)/2). 
Trigonometric Functions 
Properties 
Page 4


Trigonometric Ratios, Functions, and 
Equations Cheat Sheet 
Trigonometric Ratios 
Definitions 
? sin?: Opposite/Hypotenuse. 
? cos?: Adjacent/Hypotenuse. 
? tan?: Opposite/Adjacent = sin?/cos?. 
? cot?: 1/tan? = cos?/sin?. 
? sec?: 1/cos?. 
? csc?: 1/sin?. 
Standard Angle Values 
? 0° 30° 45° 60° 90° 
sin? 0 1/2 v2/2 v3/2 1 
cos? 1 v3/2 v2/2 1/2 0 
? 0° 30° 45° 60° 90° 
tan? 0 v3/3 1 v3 undefine
d 
Signs in Quadrants 
? I: All positive. 
? II: sin, csc positive; others negative. 
? III: tan, cot positive; others negative. 
? IV: cos, sec positive; others negative. 
Relationships 
? sin²? + cos²? = 1. 
? 1 + tan²? = sec²?. 
? 1 + cot²? = csc²?. 
Trigonometric Identities 
Pythagorean Identities 
? sin²? + cos²? = 1. 
? 1 + tan²? = sec²?. 
? 1 + cot²? = csc²?. 
Sum and Difference Identities 
? sin(A ± B) = sinA cosB ± cosA sinB. 
? cos(A ± B) = cosA cosB ± sinA sinB. 
? tan(A ± B) = (tanA ± tanB)/(1 ± tanA tanB). 
Double Angle Identities 
? sin2? = 2sin? cos?. 
? cos2? = cos²? - sin²? = 2cos²? - 1 = 1 - 2sin²?. 
? tan2? = 2tan?/(1 - tan²?). 
Half Angle Identities 
? sin(?/2) = ±v[(1 - cos?)/2]. 
? cos(?/2) = ±v[(1 + cos?)/2]. 
? tan(?/2) = (1 - cos?)/sin? = sin?/(1 + cos?). 
Product-to-Sum Identities 
? sinA sinB = (1/2)[cos(A-B) - cos(A+B)]. 
? cosA cosB = (1/2)[cos(A-B) + cos(A+B)]. 
? sinA cosB = (1/2)[sin(A+B) + sin(A-B)]. 
Sum-to-Product Identities 
? sinA + sinB = 2sin((A+B)/2)cos((A-B)/2). 
? sinA - sinB = 2cos((A+B)/2)sin((A-B)/2). 
? cosA + cosB = 2cos((A+B)/2)cos((A-B)/2). 
? cosA - cosB = -2sin((A+B)/2)sin((A-B)/2). 
Trigonometric Functions 
Properties 
? sin?, cos?: Period = 2p, Domain = R, Range = [-1, 1]. 
? tan?, cot?: Period = p, Domain = {? | ? ? (2k+1)p/2}, Range = R. 
? sec?, csc?: Period = 2p, Domain = {? | ? ? kp (csc), ? ? (2k+1)p/2 (sec)}, Range = 
(-8,-1] ? [1,8). 
? Even/Odd: cos, sec are even; sin, tan, csc, cot are odd. 
Graphs 
? sin?: Wave, amplitude 1, crosses x-axis at kp. 
? cos?: Similar to sin?, shifted by p/2. 
? tan?: Asymptotes at (2k+1)p/2, period p. 
Trigonometric Equations 
General Solutions 
? sin? = k (|k| = 1): ? = sin?¹k + 2np or ? = p - sin?¹k + 2np, n ? Z. 
? cos? = k (|k| = 1): ? = ±cos?¹k + 2np, n ? Z. 
? tan? = k: ? = tan?¹k + np, n ? Z. 
? sin(m?) = k: ? = (1/m)[sin?¹k + 2np] or ? = (1/m)[p - sin?¹k + 2np]. 
Solving Techniques 
? Use identities to simplify (e.g., sin²? = 1 - cos²?). 
? Factorize or use quadratic formulas for complex equations. 
? Apply Weierstrass substitution (t = tan(?/2)) for rationalizing. 
Inverse Trigonometric Functions 
Page 5


Trigonometric Ratios, Functions, and 
Equations Cheat Sheet 
Trigonometric Ratios 
Definitions 
? sin?: Opposite/Hypotenuse. 
? cos?: Adjacent/Hypotenuse. 
? tan?: Opposite/Adjacent = sin?/cos?. 
? cot?: 1/tan? = cos?/sin?. 
? sec?: 1/cos?. 
? csc?: 1/sin?. 
Standard Angle Values 
? 0° 30° 45° 60° 90° 
sin? 0 1/2 v2/2 v3/2 1 
cos? 1 v3/2 v2/2 1/2 0 
? 0° 30° 45° 60° 90° 
tan? 0 v3/3 1 v3 undefine
d 
Signs in Quadrants 
? I: All positive. 
? II: sin, csc positive; others negative. 
? III: tan, cot positive; others negative. 
? IV: cos, sec positive; others negative. 
Relationships 
? sin²? + cos²? = 1. 
? 1 + tan²? = sec²?. 
? 1 + cot²? = csc²?. 
Trigonometric Identities 
Pythagorean Identities 
? sin²? + cos²? = 1. 
? 1 + tan²? = sec²?. 
? 1 + cot²? = csc²?. 
Sum and Difference Identities 
? sin(A ± B) = sinA cosB ± cosA sinB. 
? cos(A ± B) = cosA cosB ± sinA sinB. 
? tan(A ± B) = (tanA ± tanB)/(1 ± tanA tanB). 
Double Angle Identities 
? sin2? = 2sin? cos?. 
? cos2? = cos²? - sin²? = 2cos²? - 1 = 1 - 2sin²?. 
? tan2? = 2tan?/(1 - tan²?). 
Half Angle Identities 
? sin(?/2) = ±v[(1 - cos?)/2]. 
? cos(?/2) = ±v[(1 + cos?)/2]. 
? tan(?/2) = (1 - cos?)/sin? = sin?/(1 + cos?). 
Product-to-Sum Identities 
? sinA sinB = (1/2)[cos(A-B) - cos(A+B)]. 
? cosA cosB = (1/2)[cos(A-B) + cos(A+B)]. 
? sinA cosB = (1/2)[sin(A+B) + sin(A-B)]. 
Sum-to-Product Identities 
? sinA + sinB = 2sin((A+B)/2)cos((A-B)/2). 
? sinA - sinB = 2cos((A+B)/2)sin((A-B)/2). 
? cosA + cosB = 2cos((A+B)/2)cos((A-B)/2). 
? cosA - cosB = -2sin((A+B)/2)sin((A-B)/2). 
Trigonometric Functions 
Properties 
? sin?, cos?: Period = 2p, Domain = R, Range = [-1, 1]. 
? tan?, cot?: Period = p, Domain = {? | ? ? (2k+1)p/2}, Range = R. 
? sec?, csc?: Period = 2p, Domain = {? | ? ? kp (csc), ? ? (2k+1)p/2 (sec)}, Range = 
(-8,-1] ? [1,8). 
? Even/Odd: cos, sec are even; sin, tan, csc, cot are odd. 
Graphs 
? sin?: Wave, amplitude 1, crosses x-axis at kp. 
? cos?: Similar to sin?, shifted by p/2. 
? tan?: Asymptotes at (2k+1)p/2, period p. 
Trigonometric Equations 
General Solutions 
? sin? = k (|k| = 1): ? = sin?¹k + 2np or ? = p - sin?¹k + 2np, n ? Z. 
? cos? = k (|k| = 1): ? = ±cos?¹k + 2np, n ? Z. 
? tan? = k: ? = tan?¹k + np, n ? Z. 
? sin(m?) = k: ? = (1/m)[sin?¹k + 2np] or ? = (1/m)[p - sin?¹k + 2np]. 
Solving Techniques 
? Use identities to simplify (e.g., sin²? = 1 - cos²?). 
? Factorize or use quadratic formulas for complex equations. 
? Apply Weierstrass substitution (t = tan(?/2)) for rationalizing. 
Inverse Trigonometric Functions 
Definitions and Ranges 
? sin?¹x: Domain = [-1, 1], Range = [-p/2, p/2]. 
? cos?¹x: Domain = [-1, 1], Range = [0, p]. 
? tan?¹x: Domain = R, Range = (-p/2, p/2). 
Properties 
? sin?¹(-x) = -sin?¹x, cos?¹(-x) = p - cos?¹x, tan?¹(-x) = -tan?¹x. 
? sin?¹x + cos?¹x = p/2, tan?¹x + tan?¹(1/x) = ±p/2 (x > 0: p/2, x < 0: -p/2). 
Applications 
Heights and Distances 
? Angle of Elevation: Angle from horizontal upward to object. 
? Angle of Depression: Angle from horizontal downward to object. 
? Use tan? = height/distance in right triangles. 
Problem-Solving Tactics 
? Simplify expressions using Pythagorean or angle identities. 
? Convert products to sums using product-to-sum identities. 
? Use t = tan(?/2) for equations: sin? = 2t/(1 + t²), cos? = (1 - t²)/(1 + t²). 
? Check quadrants for signs and principal values in inverse functions. 
? Solve multiple-angle equations by reducing to single-angle forms. 
Formula Table 
Read More
176 videos|588 docs|160 tests

FAQs on Cheat Sheet: Trigonometric Ratios, Functions & Equations - Mathematics (Maths) for JEE Main & Advanced

1. What are trigonometric ratios and how are they defined in a right triangle?
Ans.Trigonometric ratios are the ratios of the lengths of the sides of a right triangle. They are defined as follows: - Sine (sin) of an angle is the ratio of the length of the opposite side to the length of the hypotenuse. - Cosine (cos) of an angle is the ratio of the length of the adjacent side to the length of the hypotenuse. - Tangent (tan) of an angle is the ratio of the length of the opposite side to the length of the adjacent side. These ratios are fundamental in trigonometry and are used to solve various geometrical problems.
2. How do you derive the values of trigonometric functions for standard angles?
Ans.The values of trigonometric functions for standard angles (0°, 30°, 45°, 60°, and 90°) can be derived using the properties of special triangles. For example: - For 30°: In a 30-60-90 triangle, the ratios are 1:√3:2, leading to sin(30°) = 1/2, cos(30°) = √3/2, and tan(30°) = 1/√3. - For 45°: In a 45-45-90 triangle, both legs are of equal length, giving sin(45°) = cos(45°) = √2/2 and tan(45°) = 1. - For 60°: Similar reasoning gives sin(60°) = √3/2, cos(60°) = 1/2, and tan(60°) = √3.
3. What are the key identities in trigonometry that are essential for solving equations?
Ans.Key identities in trigonometry include: - Pythagorean Identity: sin²(θ) + cos²(θ) = 1. - Angle Sum and Difference Identities: - sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b) - cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b) - Double Angle Formulas: - sin(2θ) = 2sin(θ)cos(θ) - cos(2θ) = cos²(θ) - sin²(θ) = 2cos²(θ) - 1 = 1 - 2sin²(θ) These identities are crucial for simplifying expressions and solving trigonometric equations.
4. How can trigonometric equations be solved using algebraic methods?
Ans.Trigonometric equations can be solved using various algebraic methods such as: - Isolating the trigonometric function on one side of the equation. - Using identities to transform the equation into a more manageable form. - Applying inverse trigonometric functions to find angles that satisfy the equation. - Considering the periodic nature of trigonometric functions to find all possible solutions within a specified interval. By systematically applying these methods, one can solve complex trigonometric equations effectively.
5. Why is understanding the unit circle important for studying trigonometric functions?
Ans.Understanding the unit circle is crucial because it provides a geometric interpretation of trigonometric functions. The unit circle is a circle with a radius of one centered at the origin of a coordinate plane. The coordinates of any point on the circle can be expressed as (cos(θ), sin(θ)), where θ is the angle formed with the positive x-axis. This interpretation helps in: - Visualizing the values of sine and cosine for various angles. - Easily determining the values of trigonometric functions for angles beyond the standard range (0° to 360°). - Understanding the periodicity and symmetry of trigonometric functions, which is essential for solving equations and graphing these functions.
Related Searches

Previous Year Questions with Solutions

,

Semester Notes

,

shortcuts and tricks

,

Objective type Questions

,

Cheat Sheet: Trigonometric Ratios

,

MCQs

,

Important questions

,

Cheat Sheet: Trigonometric Ratios

,

ppt

,

mock tests for examination

,

Free

,

pdf

,

Viva Questions

,

Sample Paper

,

past year papers

,

study material

,

Functions & Equations | Mathematics (Maths) for JEE Main & Advanced

,

Extra Questions

,

Functions & Equations | Mathematics (Maths) for JEE Main & Advanced

,

Cheat Sheet: Trigonometric Ratios

,

practice quizzes

,

Summary

,

Functions & Equations | Mathematics (Maths) for JEE Main & Advanced

,

video lectures

,

Exam

;