Page 1
Trigonometric Ratios, Functions, and
Equations Cheat Sheet
Trigonometric Ratios
Definitions
? sin?: Opposite/Hypotenuse.
? cos?: Adjacent/Hypotenuse.
? tan?: Opposite/Adjacent = sin?/cos?.
? cot?: 1/tan? = cos?/sin?.
? sec?: 1/cos?.
? csc?: 1/sin?.
Standard Angle Values
? 0° 30° 45° 60° 90°
sin? 0 1/2 v2/2 v3/2 1
cos? 1 v3/2 v2/2 1/2 0
Page 2
Trigonometric Ratios, Functions, and
Equations Cheat Sheet
Trigonometric Ratios
Definitions
? sin?: Opposite/Hypotenuse.
? cos?: Adjacent/Hypotenuse.
? tan?: Opposite/Adjacent = sin?/cos?.
? cot?: 1/tan? = cos?/sin?.
? sec?: 1/cos?.
? csc?: 1/sin?.
Standard Angle Values
? 0° 30° 45° 60° 90°
sin? 0 1/2 v2/2 v3/2 1
cos? 1 v3/2 v2/2 1/2 0
? 0° 30° 45° 60° 90°
tan? 0 v3/3 1 v3 undefine
d
Signs in Quadrants
? I: All positive.
? II: sin, csc positive; others negative.
? III: tan, cot positive; others negative.
? IV: cos, sec positive; others negative.
Relationships
? sin²? + cos²? = 1.
? 1 + tan²? = sec²?.
? 1 + cot²? = csc²?.
Trigonometric Identities
Pythagorean Identities
? sin²? + cos²? = 1.
? 1 + tan²? = sec²?.
? 1 + cot²? = csc²?.
Sum and Difference Identities
Page 3
Trigonometric Ratios, Functions, and
Equations Cheat Sheet
Trigonometric Ratios
Definitions
? sin?: Opposite/Hypotenuse.
? cos?: Adjacent/Hypotenuse.
? tan?: Opposite/Adjacent = sin?/cos?.
? cot?: 1/tan? = cos?/sin?.
? sec?: 1/cos?.
? csc?: 1/sin?.
Standard Angle Values
? 0° 30° 45° 60° 90°
sin? 0 1/2 v2/2 v3/2 1
cos? 1 v3/2 v2/2 1/2 0
? 0° 30° 45° 60° 90°
tan? 0 v3/3 1 v3 undefine
d
Signs in Quadrants
? I: All positive.
? II: sin, csc positive; others negative.
? III: tan, cot positive; others negative.
? IV: cos, sec positive; others negative.
Relationships
? sin²? + cos²? = 1.
? 1 + tan²? = sec²?.
? 1 + cot²? = csc²?.
Trigonometric Identities
Pythagorean Identities
? sin²? + cos²? = 1.
? 1 + tan²? = sec²?.
? 1 + cot²? = csc²?.
Sum and Difference Identities
? sin(A ± B) = sinA cosB ± cosA sinB.
? cos(A ± B) = cosA cosB ± sinA sinB.
? tan(A ± B) = (tanA ± tanB)/(1 ± tanA tanB).
Double Angle Identities
? sin2? = 2sin? cos?.
? cos2? = cos²? - sin²? = 2cos²? - 1 = 1 - 2sin²?.
? tan2? = 2tan?/(1 - tan²?).
Half Angle Identities
? sin(?/2) = ±v[(1 - cos?)/2].
? cos(?/2) = ±v[(1 + cos?)/2].
? tan(?/2) = (1 - cos?)/sin? = sin?/(1 + cos?).
Product-to-Sum Identities
? sinA sinB = (1/2)[cos(A-B) - cos(A+B)].
? cosA cosB = (1/2)[cos(A-B) + cos(A+B)].
? sinA cosB = (1/2)[sin(A+B) + sin(A-B)].
Sum-to-Product Identities
? sinA + sinB = 2sin((A+B)/2)cos((A-B)/2).
? sinA - sinB = 2cos((A+B)/2)sin((A-B)/2).
? cosA + cosB = 2cos((A+B)/2)cos((A-B)/2).
? cosA - cosB = -2sin((A+B)/2)sin((A-B)/2).
Trigonometric Functions
Properties
Page 4
Trigonometric Ratios, Functions, and
Equations Cheat Sheet
Trigonometric Ratios
Definitions
? sin?: Opposite/Hypotenuse.
? cos?: Adjacent/Hypotenuse.
? tan?: Opposite/Adjacent = sin?/cos?.
? cot?: 1/tan? = cos?/sin?.
? sec?: 1/cos?.
? csc?: 1/sin?.
Standard Angle Values
? 0° 30° 45° 60° 90°
sin? 0 1/2 v2/2 v3/2 1
cos? 1 v3/2 v2/2 1/2 0
? 0° 30° 45° 60° 90°
tan? 0 v3/3 1 v3 undefine
d
Signs in Quadrants
? I: All positive.
? II: sin, csc positive; others negative.
? III: tan, cot positive; others negative.
? IV: cos, sec positive; others negative.
Relationships
? sin²? + cos²? = 1.
? 1 + tan²? = sec²?.
? 1 + cot²? = csc²?.
Trigonometric Identities
Pythagorean Identities
? sin²? + cos²? = 1.
? 1 + tan²? = sec²?.
? 1 + cot²? = csc²?.
Sum and Difference Identities
? sin(A ± B) = sinA cosB ± cosA sinB.
? cos(A ± B) = cosA cosB ± sinA sinB.
? tan(A ± B) = (tanA ± tanB)/(1 ± tanA tanB).
Double Angle Identities
? sin2? = 2sin? cos?.
? cos2? = cos²? - sin²? = 2cos²? - 1 = 1 - 2sin²?.
? tan2? = 2tan?/(1 - tan²?).
Half Angle Identities
? sin(?/2) = ±v[(1 - cos?)/2].
? cos(?/2) = ±v[(1 + cos?)/2].
? tan(?/2) = (1 - cos?)/sin? = sin?/(1 + cos?).
Product-to-Sum Identities
? sinA sinB = (1/2)[cos(A-B) - cos(A+B)].
? cosA cosB = (1/2)[cos(A-B) + cos(A+B)].
? sinA cosB = (1/2)[sin(A+B) + sin(A-B)].
Sum-to-Product Identities
? sinA + sinB = 2sin((A+B)/2)cos((A-B)/2).
? sinA - sinB = 2cos((A+B)/2)sin((A-B)/2).
? cosA + cosB = 2cos((A+B)/2)cos((A-B)/2).
? cosA - cosB = -2sin((A+B)/2)sin((A-B)/2).
Trigonometric Functions
Properties
? sin?, cos?: Period = 2p, Domain = R, Range = [-1, 1].
? tan?, cot?: Period = p, Domain = {? | ? ? (2k+1)p/2}, Range = R.
? sec?, csc?: Period = 2p, Domain = {? | ? ? kp (csc), ? ? (2k+1)p/2 (sec)}, Range =
(-8,-1] ? [1,8).
? Even/Odd: cos, sec are even; sin, tan, csc, cot are odd.
Graphs
? sin?: Wave, amplitude 1, crosses x-axis at kp.
? cos?: Similar to sin?, shifted by p/2.
? tan?: Asymptotes at (2k+1)p/2, period p.
Trigonometric Equations
General Solutions
? sin? = k (|k| = 1): ? = sin?¹k + 2np or ? = p - sin?¹k + 2np, n ? Z.
? cos? = k (|k| = 1): ? = ±cos?¹k + 2np, n ? Z.
? tan? = k: ? = tan?¹k + np, n ? Z.
? sin(m?) = k: ? = (1/m)[sin?¹k + 2np] or ? = (1/m)[p - sin?¹k + 2np].
Solving Techniques
? Use identities to simplify (e.g., sin²? = 1 - cos²?).
? Factorize or use quadratic formulas for complex equations.
? Apply Weierstrass substitution (t = tan(?/2)) for rationalizing.
Inverse Trigonometric Functions
Page 5
Trigonometric Ratios, Functions, and
Equations Cheat Sheet
Trigonometric Ratios
Definitions
? sin?: Opposite/Hypotenuse.
? cos?: Adjacent/Hypotenuse.
? tan?: Opposite/Adjacent = sin?/cos?.
? cot?: 1/tan? = cos?/sin?.
? sec?: 1/cos?.
? csc?: 1/sin?.
Standard Angle Values
? 0° 30° 45° 60° 90°
sin? 0 1/2 v2/2 v3/2 1
cos? 1 v3/2 v2/2 1/2 0
? 0° 30° 45° 60° 90°
tan? 0 v3/3 1 v3 undefine
d
Signs in Quadrants
? I: All positive.
? II: sin, csc positive; others negative.
? III: tan, cot positive; others negative.
? IV: cos, sec positive; others negative.
Relationships
? sin²? + cos²? = 1.
? 1 + tan²? = sec²?.
? 1 + cot²? = csc²?.
Trigonometric Identities
Pythagorean Identities
? sin²? + cos²? = 1.
? 1 + tan²? = sec²?.
? 1 + cot²? = csc²?.
Sum and Difference Identities
? sin(A ± B) = sinA cosB ± cosA sinB.
? cos(A ± B) = cosA cosB ± sinA sinB.
? tan(A ± B) = (tanA ± tanB)/(1 ± tanA tanB).
Double Angle Identities
? sin2? = 2sin? cos?.
? cos2? = cos²? - sin²? = 2cos²? - 1 = 1 - 2sin²?.
? tan2? = 2tan?/(1 - tan²?).
Half Angle Identities
? sin(?/2) = ±v[(1 - cos?)/2].
? cos(?/2) = ±v[(1 + cos?)/2].
? tan(?/2) = (1 - cos?)/sin? = sin?/(1 + cos?).
Product-to-Sum Identities
? sinA sinB = (1/2)[cos(A-B) - cos(A+B)].
? cosA cosB = (1/2)[cos(A-B) + cos(A+B)].
? sinA cosB = (1/2)[sin(A+B) + sin(A-B)].
Sum-to-Product Identities
? sinA + sinB = 2sin((A+B)/2)cos((A-B)/2).
? sinA - sinB = 2cos((A+B)/2)sin((A-B)/2).
? cosA + cosB = 2cos((A+B)/2)cos((A-B)/2).
? cosA - cosB = -2sin((A+B)/2)sin((A-B)/2).
Trigonometric Functions
Properties
? sin?, cos?: Period = 2p, Domain = R, Range = [-1, 1].
? tan?, cot?: Period = p, Domain = {? | ? ? (2k+1)p/2}, Range = R.
? sec?, csc?: Period = 2p, Domain = {? | ? ? kp (csc), ? ? (2k+1)p/2 (sec)}, Range =
(-8,-1] ? [1,8).
? Even/Odd: cos, sec are even; sin, tan, csc, cot are odd.
Graphs
? sin?: Wave, amplitude 1, crosses x-axis at kp.
? cos?: Similar to sin?, shifted by p/2.
? tan?: Asymptotes at (2k+1)p/2, period p.
Trigonometric Equations
General Solutions
? sin? = k (|k| = 1): ? = sin?¹k + 2np or ? = p - sin?¹k + 2np, n ? Z.
? cos? = k (|k| = 1): ? = ±cos?¹k + 2np, n ? Z.
? tan? = k: ? = tan?¹k + np, n ? Z.
? sin(m?) = k: ? = (1/m)[sin?¹k + 2np] or ? = (1/m)[p - sin?¹k + 2np].
Solving Techniques
? Use identities to simplify (e.g., sin²? = 1 - cos²?).
? Factorize or use quadratic formulas for complex equations.
? Apply Weierstrass substitution (t = tan(?/2)) for rationalizing.
Inverse Trigonometric Functions
Definitions and Ranges
? sin?¹x: Domain = [-1, 1], Range = [-p/2, p/2].
? cos?¹x: Domain = [-1, 1], Range = [0, p].
? tan?¹x: Domain = R, Range = (-p/2, p/2).
Properties
? sin?¹(-x) = -sin?¹x, cos?¹(-x) = p - cos?¹x, tan?¹(-x) = -tan?¹x.
? sin?¹x + cos?¹x = p/2, tan?¹x + tan?¹(1/x) = ±p/2 (x > 0: p/2, x < 0: -p/2).
Applications
Heights and Distances
? Angle of Elevation: Angle from horizontal upward to object.
? Angle of Depression: Angle from horizontal downward to object.
? Use tan? = height/distance in right triangles.
Problem-Solving Tactics
? Simplify expressions using Pythagorean or angle identities.
? Convert products to sums using product-to-sum identities.
? Use t = tan(?/2) for equations: sin? = 2t/(1 + t²), cos? = (1 - t²)/(1 + t²).
? Check quadrants for signs and principal values in inverse functions.
? Solve multiple-angle equations by reducing to single-angle forms.
Formula Table
Read More