Download, print and study this document offline |
Page 1 GA TE CE 2026 F orm ula Sheet: Structural Analysis 1. Statically Determinate Structures • Degree of static determinacy: D s =3m+r-3j ( for plane trusses) D s =6m+r-6j ( for space trusses) where: – D s : Degree of s tatic determinacy – m : Num b er of mem b ers – r : Num b er of reactions – j : Num b er of join ts • Equilibrium equations (2D): ? F x =0, ? F y =0, ? M =0 • Equilibrium equations (3D): ? F x =0, ? F y =0, ? F z =0, ? M x =0, ? M y =0, ? M z =0 2. F orce Metho ds (Statically Indeterminate Structures) • Flexibilit y metho d (force metho d): d ij = ? M i M j EI dx where: – d ij : Flexibilit y co e?icien t (deflection due to unit forc e) – M i , M j : Momen t functions due to applied and redundan t forces – E : Mo dulus of elasticit y (N/mm²) – I : Momen t of inertia (mm?) • Compatibilit y equation: ? i + ? d ij F j =0 where: – ? i : Displacemen t due to applied loads – F j : Redundan t forces 3. Ener gy Metho ds • Strain energy: U = ? M 2 2EI dx ( for b ending) U = ? N 2 2EA dx ( for axial) where: – U : Strain energy (N·mm) – M : Bending momen t (N·mm) – N : Axial force (N) – A : Cross-sectional area (mm²) 1 Page 2 GA TE CE 2026 F orm ula Sheet: Structural Analysis 1. Statically Determinate Structures • Degree of static determinacy: D s =3m+r-3j ( for plane trusses) D s =6m+r-6j ( for space trusses) where: – D s : Degree of s tatic determinacy – m : Num b er of mem b ers – r : Num b er of reactions – j : Num b er of join ts • Equilibrium equations (2D): ? F x =0, ? F y =0, ? M =0 • Equilibrium equations (3D): ? F x =0, ? F y =0, ? F z =0, ? M x =0, ? M y =0, ? M z =0 2. F orce Metho ds (Statically Indeterminate Structures) • Flexibilit y metho d (force metho d): d ij = ? M i M j EI dx where: – d ij : Flexibilit y co e?icien t (deflection due to unit forc e) – M i , M j : Momen t functions due to applied and redundan t forces – E : Mo dulus of elasticit y (N/mm²) – I : Momen t of inertia (mm?) • Compatibilit y equation: ? i + ? d ij F j =0 where: – ? i : Displacemen t due to applied loads – F j : Redundan t forces 3. Ener gy Metho ds • Strain energy: U = ? M 2 2EI dx ( for b ending) U = ? N 2 2EA dx ( for axial) where: – U : Strain energy (N·mm) – M : Bending momen t (N·mm) – N : Axial force (N) – A : Cross-sectional area (mm²) 1 • Castigliano’s theorem (deflection): d i = ?U ?P i where: – d i : Deflection at p oin t of load P i – P i : Applied load (N) • Virtual w ork principle: dW = ? M ·m EI dx =0 where: – m : Virtual momen t due to unit load 4. Metho d of Sup erp osition • T otal deflection or reaction: d total =d 1 +d 2 +···+d n where: – d i : Deflection due to individual load case i • T otal momen t or force: M total =M 1 +M 2 +···+M n 5. Analysis of T russes • Metho d of join ts (force in mem b er): ? F x =0, ? F y =0 ( at eac h join t) • Metho d of sections (force in sp ecific mem b er): F i = M cut d where: – F i : F orce in mem b er i (kN) – M cut : Momen t ab out cut p oin t (kN·m) – d : P erp endicular distance from c ut p oin t to mem b er (m) 6. Analysis of Arc hes • Horizon tal thrust for three-hinged arc h: H = ? My ·y EI dx ? y 2 EI dx where: – H : Horizon tal thrust (kN) – M y : Momen t due to applied loads (kN·m) – y : V ertical distance from arc h axis (m) • Bending momen t at an y section: M =M y -H ·y 2 Page 3 GA TE CE 2026 F orm ula Sheet: Structural Analysis 1. Statically Determinate Structures • Degree of static determinacy: D s =3m+r-3j ( for plane trusses) D s =6m+r-6j ( for space trusses) where: – D s : Degree of s tatic determinacy – m : Num b er of mem b ers – r : Num b er of reactions – j : Num b er of join ts • Equilibrium equations (2D): ? F x =0, ? F y =0, ? M =0 • Equilibrium equations (3D): ? F x =0, ? F y =0, ? F z =0, ? M x =0, ? M y =0, ? M z =0 2. F orce Metho ds (Statically Indeterminate Structures) • Flexibilit y metho d (force metho d): d ij = ? M i M j EI dx where: – d ij : Flexibilit y co e?icien t (deflection due to unit forc e) – M i , M j : Momen t functions due to applied and redundan t forces – E : Mo dulus of elasticit y (N/mm²) – I : Momen t of inertia (mm?) • Compatibilit y equation: ? i + ? d ij F j =0 where: – ? i : Displacemen t due to applied loads – F j : Redundan t forces 3. Ener gy Metho ds • Strain energy: U = ? M 2 2EI dx ( for b ending) U = ? N 2 2EA dx ( for axial) where: – U : Strain energy (N·mm) – M : Bending momen t (N·mm) – N : Axial force (N) – A : Cross-sectional area (mm²) 1 • Castigliano’s theorem (deflection): d i = ?U ?P i where: – d i : Deflection at p oin t of load P i – P i : Applied load (N) • Virtual w ork principle: dW = ? M ·m EI dx =0 where: – m : Virtual momen t due to unit load 4. Metho d of Sup erp osition • T otal deflection or reaction: d total =d 1 +d 2 +···+d n where: – d i : Deflection due to individual load case i • T otal momen t or force: M total =M 1 +M 2 +···+M n 5. Analysis of T russes • Metho d of join ts (force in mem b er): ? F x =0, ? F y =0 ( at eac h join t) • Metho d of sections (force in sp ecific mem b er): F i = M cut d where: – F i : F orce in mem b er i (kN) – M cut : Momen t ab out cut p oin t (kN·m) – d : P erp endicular distance from c ut p oin t to mem b er (m) 6. Analysis of Arc hes • Horizon tal thrust for three-hinged arc h: H = ? My ·y EI dx ? y 2 EI dx where: – H : Horizon tal thrust (kN) – M y : Momen t due to applied loads (kN·m) – y : V ertical distance from arc h axis (m) • Bending momen t at an y section: M =M y -H ·y 2 7. Analysis of Beams • Bending momen t (simply supp orted b eam, UDL): M max = wL 2 8 where: – M max : Maxim um b ending momen t (kN·m) – w : Uniformly distributed l oad (kN/m) – L : Span length (m) • Maxim um deflection (simply supp orted b eam, UDL): d max = 5wL 4 384EI • Shear force (p oin t load at midspan): V = P 2 where: – V : Shear force (kN) – P : P oin t load (kN) 8. Analysis of Cables • Maxim um tension in cable (parab olic shap e, UDL): T max = v H 2 + ( wL 2 ) 2 where: – T max : Maxim um tension (kN) – H : Horizon tal comp onen t of tension (kN) – w : Uniform load p er u nit length (kN/m) – L : Span length (m) • Cable sag: f = wL 2 8H where: – f : Sag at midspan (m) 9. Analysis of F rames • Momen t distribution metho d (balancing momen t): M ij = DF ij ·M fixed where: – M ij : Distributed momen t at join t (kN·m) – DF ij : Distribution fac tor, DF ij = kij ? k – k ij : Stiffness of mem b er ( k = 4EI L for fixed ends) – M fixed : Fixed-end momen t 3 Page 4 GA TE CE 2026 F orm ula Sheet: Structural Analysis 1. Statically Determinate Structures • Degree of static determinacy: D s =3m+r-3j ( for plane trusses) D s =6m+r-6j ( for space trusses) where: – D s : Degree of s tatic determinacy – m : Num b er of mem b ers – r : Num b er of reactions – j : Num b er of join ts • Equilibrium equations (2D): ? F x =0, ? F y =0, ? M =0 • Equilibrium equations (3D): ? F x =0, ? F y =0, ? F z =0, ? M x =0, ? M y =0, ? M z =0 2. F orce Metho ds (Statically Indeterminate Structures) • Flexibilit y metho d (force metho d): d ij = ? M i M j EI dx where: – d ij : Flexibilit y co e?icien t (deflection due to unit forc e) – M i , M j : Momen t functions due to applied and redundan t forces – E : Mo dulus of elasticit y (N/mm²) – I : Momen t of inertia (mm?) • Compatibilit y equation: ? i + ? d ij F j =0 where: – ? i : Displacemen t due to applied loads – F j : Redundan t forces 3. Ener gy Metho ds • Strain energy: U = ? M 2 2EI dx ( for b ending) U = ? N 2 2EA dx ( for axial) where: – U : Strain energy (N·mm) – M : Bending momen t (N·mm) – N : Axial force (N) – A : Cross-sectional area (mm²) 1 • Castigliano’s theorem (deflection): d i = ?U ?P i where: – d i : Deflection at p oin t of load P i – P i : Applied load (N) • Virtual w ork principle: dW = ? M ·m EI dx =0 where: – m : Virtual momen t due to unit load 4. Metho d of Sup erp osition • T otal deflection or reaction: d total =d 1 +d 2 +···+d n where: – d i : Deflection due to individual load case i • T otal momen t or force: M total =M 1 +M 2 +···+M n 5. Analysis of T russes • Metho d of join ts (force in mem b er): ? F x =0, ? F y =0 ( at eac h join t) • Metho d of sections (force in sp ecific mem b er): F i = M cut d where: – F i : F orce in mem b er i (kN) – M cut : Momen t ab out cut p oin t (kN·m) – d : P erp endicular distance from c ut p oin t to mem b er (m) 6. Analysis of Arc hes • Horizon tal thrust for three-hinged arc h: H = ? My ·y EI dx ? y 2 EI dx where: – H : Horizon tal thrust (kN) – M y : Momen t due to applied loads (kN·m) – y : V ertical distance from arc h axis (m) • Bending momen t at an y section: M =M y -H ·y 2 7. Analysis of Beams • Bending momen t (simply supp orted b eam, UDL): M max = wL 2 8 where: – M max : Maxim um b ending momen t (kN·m) – w : Uniformly distributed l oad (kN/m) – L : Span length (m) • Maxim um deflection (simply supp orted b eam, UDL): d max = 5wL 4 384EI • Shear force (p oin t load at midspan): V = P 2 where: – V : Shear force (kN) – P : P oin t load (kN) 8. Analysis of Cables • Maxim um tension in cable (parab olic shap e, UDL): T max = v H 2 + ( wL 2 ) 2 where: – T max : Maxim um tension (kN) – H : Horizon tal comp onen t of tension (kN) – w : Uniform load p er u nit length (kN/m) – L : Span length (m) • Cable sag: f = wL 2 8H where: – f : Sag at midspan (m) 9. Analysis of F rames • Momen t distribution metho d (balancing momen t): M ij = DF ij ·M fixed where: – M ij : Distributed momen t at join t (kN·m) – DF ij : Distribution fac tor, DF ij = kij ? k – k ij : Stiffness of mem b er ( k = 4EI L for fixed ends) – M fixed : Fixed-end momen t 3 • Carry-o v er factor: CO =0.5 ( for fixed ends ) • Slop e deflection equation: M ij = 2EI L ( 2? i +? j - 3? L ) +M fixed where: – ? i , ? j : Rotations at ends i and j (radians) – ? : Relativ e displacemen t (mm) 4Read More
34 videos|164 docs|31 tests
|