Download, print and study this document offline |
Page 1 GA TE CE 2026 F orm ula Sheet: T ra?ic Engineering 1. T ra?ic Studies on Flo w and Sp eed • T ra?ic flo w (v olume): q = N t where: – q : T ra?ic flo w rate (v ehicles/hour) – N : Num b er of v ehicles observ ed – t : Time duration (hours) • Space mean sp eed: v s = n·L ? t i where: – v s : Space mean sp ee d (km/h) – n : Num b er of v ehicles – L : Length of road segmen t (km) – t i : T ra v el time of v ehicle i (hours) • Time mean sp eed: v t = ? v i n where: – v t : Time mean sp eed (km/h) – v i : Sp eed of v ehicle i (km/h) 2. P e ak Hour F actor • P eak Hour F actor (PHF): PHF = q hourly 4·q p eak 15-min where: – q hourly : Hourly tra?ic v olume (v ehicles/hour) – q p eak 15-min : Maxim um 15-min ute flo w rate (v ehicles/15 min) 3. A c ciden t Study and Statistical Analysis • A cciden t rate (p er million v ehicle-kilometers): R = A·10 6 V ·L where: – R : A cciden t rate – A : Num b er of acciden ts – V : T ra?ic v olume (v ehicles/da y ) – L : Length of road segmen t (km) • Mean of tra?ic data: ¯ x = ? x i n where: 1 Page 2 GA TE CE 2026 F orm ula Sheet: T ra?ic Engineering 1. T ra?ic Studies on Flo w and Sp eed • T ra?ic flo w (v olume): q = N t where: – q : T ra?ic flo w rate (v ehicles/hour) – N : Num b er of v ehicles observ ed – t : Time duration (hours) • Space mean sp eed: v s = n·L ? t i where: – v s : Space mean sp ee d (km/h) – n : Num b er of v ehicles – L : Length of road segmen t (km) – t i : T ra v el time of v ehicle i (hours) • Time mean sp eed: v t = ? v i n where: – v t : Time mean sp eed (km/h) – v i : Sp eed of v ehicle i (km/h) 2. P e ak Hour F actor • P eak Hour F actor (PHF): PHF = q hourly 4·q p eak 15-min where: – q hourly : Hourly tra?ic v olume (v ehicles/hour) – q p eak 15-min : Maxim um 15-min ute flo w rate (v ehicles/15 min) 3. A c ciden t Study and Statistical Analysis • A cciden t rate (p er million v ehicle-kilometers): R = A·10 6 V ·L where: – R : A cciden t rate – A : Num b er of acciden ts – V : T ra?ic v olume (v ehicles/da y ) – L : Length of road segmen t (km) • Mean of tra?ic data: ¯ x = ? x i n where: 1 – ¯ x : Mean of data (e.g., sp eed, flo w) – x i : Individual data p oin t – n : Num b er of observ ations • Standard deviation: s = v ? (x i - ¯ x) 2 n 4. Microscopic and Macroscopic P arameters of T ra?ic Flo w • Microscopic: Headw a y: h = 3600 q where: – h : A v erage time headw a y (seconds) – q : Flo w rate (v ehicles/hour) • Microscopic: Spacing: s = 1000·v q where: – s : A v erage spacing (m) – v : Sp eed ( km/h) • Macroscopic: Densit y: k = q v where: – k : T ra?ic densit y (v ehicles/km) 5. F undamen tal Relationships of T ra?ic Flo w • Flo w-densit y-sp eed relationship: q =k·v • Greenshields’ linear mo del: v =v f ( 1- k k j ) where: – v f : F ree-flo w sp eed (km/h) – k j : Jam densit y (v ehicles/km) • Maxim um flo w: q max = v f ·k j 4 6. T ra?ic Signs • Minim um size of regulatory sign: S = v·h k where: – S : Size of sign (m) – v : Approac h sp e ed (km/h) – h : Legibilit y distance (m) – k : Constan t (dep ends on sign t yp e, t ypically 0.02–0.03) 2 Page 3 GA TE CE 2026 F orm ula Sheet: T ra?ic Engineering 1. T ra?ic Studies on Flo w and Sp eed • T ra?ic flo w (v olume): q = N t where: – q : T ra?ic flo w rate (v ehicles/hour) – N : Num b er of v ehicles observ ed – t : Time duration (hours) • Space mean sp eed: v s = n·L ? t i where: – v s : Space mean sp ee d (km/h) – n : Num b er of v ehicles – L : Length of road segmen t (km) – t i : T ra v el time of v ehicle i (hours) • Time mean sp eed: v t = ? v i n where: – v t : Time mean sp eed (km/h) – v i : Sp eed of v ehicle i (km/h) 2. P e ak Hour F actor • P eak Hour F actor (PHF): PHF = q hourly 4·q p eak 15-min where: – q hourly : Hourly tra?ic v olume (v ehicles/hour) – q p eak 15-min : Maxim um 15-min ute flo w rate (v ehicles/15 min) 3. A c ciden t Study and Statistical Analysis • A cciden t rate (p er million v ehicle-kilometers): R = A·10 6 V ·L where: – R : A cciden t rate – A : Num b er of acciden ts – V : T ra?ic v olume (v ehicles/da y ) – L : Length of road segmen t (km) • Mean of tra?ic data: ¯ x = ? x i n where: 1 – ¯ x : Mean of data (e.g., sp eed, flo w) – x i : Individual data p oin t – n : Num b er of observ ations • Standard deviation: s = v ? (x i - ¯ x) 2 n 4. Microscopic and Macroscopic P arameters of T ra?ic Flo w • Microscopic: Headw a y: h = 3600 q where: – h : A v erage time headw a y (seconds) – q : Flo w rate (v ehicles/hour) • Microscopic: Spacing: s = 1000·v q where: – s : A v erage spacing (m) – v : Sp eed ( km/h) • Macroscopic: Densit y: k = q v where: – k : T ra?ic densit y (v ehicles/km) 5. F undamen tal Relationships of T ra?ic Flo w • Flo w-densit y-sp eed relationship: q =k·v • Greenshields’ linear mo del: v =v f ( 1- k k j ) where: – v f : F ree-flo w sp eed (km/h) – k j : Jam densit y (v ehicles/km) • Maxim um flo w: q max = v f ·k j 4 6. T ra?ic Signs • Minim um size of regulatory sign: S = v·h k where: – S : Size of sign (m) – v : Approac h sp e ed (km/h) – h : Legibilit y distance (m) – k : Constan t (dep ends on sign t yp e, t ypically 0.02–0.03) 2 7. Signal Design b y W ebster’s Metho d • Cycle length: C = 1.5L+5 1-Y where: – C : Optim um cycle length (seconds) – L : T otal lost time p er cycle (seconds) – Y : Sum of critical flo w ratios, Y = ? qi si – q i : Flo w rate for phase i (v ehicles/hour) – s i : Saturation flo w rate for phase i (v ehicles/hour) • Effectiv e green time for phase i : g i = y i Y (C-L) where: – g i : Effectiv e green time for phase i (seconds) – y i : Flo w ratio for phase i , y i = qi si • Lost time p er cycle: L = ? (t L +t a ) where: – t L : Start-up lost time (t ypically 2–3 se conds/phase) – t a : Am b er time (t ypically 3–5 seconds) 8. T yp es of In tersections • Channelization island area (appro ximate): A i =k·W 2 lane where: – A i : Area of island (m²) – W lane : Lane width (m) – k : Constan t (dep ends on in tersection t yp e, t ypically 2–5) 9. High w a y Capacit y • Lev el of Service (LOS) based on densit y: k = q v where: – LOS A: k= 7 v ehicles/km/lane – LOS F: k= 42 v ehicles/km/lane (HCM standards) • Capacit y of high w a y: C =s·N ·f w ·f HV ·f p where: – C : High w a y capacit y (v ehicles/hour) – s : Saturation flo w rate (t ypically 1800–2000 v ehicles/hour/lane) – N : Num b er of lanes – f w : Lane width adjustmen t factor 3 Page 4 GA TE CE 2026 F orm ula Sheet: T ra?ic Engineering 1. T ra?ic Studies on Flo w and Sp eed • T ra?ic flo w (v olume): q = N t where: – q : T ra?ic flo w rate (v ehicles/hour) – N : Num b er of v ehicles observ ed – t : Time duration (hours) • Space mean sp eed: v s = n·L ? t i where: – v s : Space mean sp ee d (km/h) – n : Num b er of v ehicles – L : Length of road segmen t (km) – t i : T ra v el time of v ehicle i (hours) • Time mean sp eed: v t = ? v i n where: – v t : Time mean sp eed (km/h) – v i : Sp eed of v ehicle i (km/h) 2. P e ak Hour F actor • P eak Hour F actor (PHF): PHF = q hourly 4·q p eak 15-min where: – q hourly : Hourly tra?ic v olume (v ehicles/hour) – q p eak 15-min : Maxim um 15-min ute flo w rate (v ehicles/15 min) 3. A c ciden t Study and Statistical Analysis • A cciden t rate (p er million v ehicle-kilometers): R = A·10 6 V ·L where: – R : A cciden t rate – A : Num b er of acciden ts – V : T ra?ic v olume (v ehicles/da y ) – L : Length of road segmen t (km) • Mean of tra?ic data: ¯ x = ? x i n where: 1 – ¯ x : Mean of data (e.g., sp eed, flo w) – x i : Individual data p oin t – n : Num b er of observ ations • Standard deviation: s = v ? (x i - ¯ x) 2 n 4. Microscopic and Macroscopic P arameters of T ra?ic Flo w • Microscopic: Headw a y: h = 3600 q where: – h : A v erage time headw a y (seconds) – q : Flo w rate (v ehicles/hour) • Microscopic: Spacing: s = 1000·v q where: – s : A v erage spacing (m) – v : Sp eed ( km/h) • Macroscopic: Densit y: k = q v where: – k : T ra?ic densit y (v ehicles/km) 5. F undamen tal Relationships of T ra?ic Flo w • Flo w-densit y-sp eed relationship: q =k·v • Greenshields’ linear mo del: v =v f ( 1- k k j ) where: – v f : F ree-flo w sp eed (km/h) – k j : Jam densit y (v ehicles/km) • Maxim um flo w: q max = v f ·k j 4 6. T ra?ic Signs • Minim um size of regulatory sign: S = v·h k where: – S : Size of sign (m) – v : Approac h sp e ed (km/h) – h : Legibilit y distance (m) – k : Constan t (dep ends on sign t yp e, t ypically 0.02–0.03) 2 7. Signal Design b y W ebster’s Metho d • Cycle length: C = 1.5L+5 1-Y where: – C : Optim um cycle length (seconds) – L : T otal lost time p er cycle (seconds) – Y : Sum of critical flo w ratios, Y = ? qi si – q i : Flo w rate for phase i (v ehicles/hour) – s i : Saturation flo w rate for phase i (v ehicles/hour) • Effectiv e green time for phase i : g i = y i Y (C-L) where: – g i : Effectiv e green time for phase i (seconds) – y i : Flo w ratio for phase i , y i = qi si • Lost time p er cycle: L = ? (t L +t a ) where: – t L : Start-up lost time (t ypically 2–3 se conds/phase) – t a : Am b er time (t ypically 3–5 seconds) 8. T yp es of In tersections • Channelization island area (appro ximate): A i =k·W 2 lane where: – A i : Area of island (m²) – W lane : Lane width (m) – k : Constan t (dep ends on in tersection t yp e, t ypically 2–5) 9. High w a y Capacit y • Lev el of Service (LOS) based on densit y: k = q v where: – LOS A: k= 7 v ehicles/km/lane – LOS F: k= 42 v ehicles/km/lane (HCM standards) • Capacit y of high w a y: C =s·N ·f w ·f HV ·f p where: – C : High w a y capacit y (v ehicles/hour) – s : Saturation flo w rate (t ypically 1800–2000 v ehicles/hour/lane) – N : Num b er of lanes – f w : Lane width adjustmen t factor 3 – f HV : Hea vy v ehicle adjustmen t factor – f p : Driv er p opulation factor • Hea vy v ehicle adjustmen t factor: f HV = 1 1+P T (E T -1)+P B (E B -1) where: – P T , P B : Prop ortion of truc ks and buses – E T , E B : P assenger car equiv alen ts for truc ks and buses 4Read More
27 videos|118 docs|58 tests
|