NEET Exam  >  NEET Notes  >  Physics Class 11  >  HC Verma Summary: Circular Motion

HC Verma Summary: Circular Motion | Physics Class 11 - NEET PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Circular Motion
July 5, 2025
Contents
1 Angular V ariables 2
1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Unit V ectors Along the Radius and T angent 3
3 A cceler ation in Circular Motion 3
3.1 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Example 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Dynamics of Circular Motion 6
4.1 Example 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Example 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Circular Turnings and Banking of Roads 6
5.1 Example 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 Example 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Centrifugal F orce 7
6.1 Example 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 Example 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7 Effect of Earth’ s Rotation on Apparent W eight 8
8 W ork ed Out Examples 8
8.1 Example 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.2 Example 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.3 Example 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.4 Example 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.5 Example 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.6 Example 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.7 Example 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.8 Example 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.9 Example 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.10 Example 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.11 Example 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.12 Example 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.13 Example 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.14 Example 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1
Page 2


Circular Motion
July 5, 2025
Contents
1 Angular V ariables 2
1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Unit V ectors Along the Radius and T angent 3
3 A cceler ation in Circular Motion 3
3.1 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Example 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Dynamics of Circular Motion 6
4.1 Example 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Example 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Circular Turnings and Banking of Roads 6
5.1 Example 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 Example 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Centrifugal F orce 7
6.1 Example 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 Example 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7 Effect of Earth’ s Rotation on Apparent W eight 8
8 W ork ed Out Examples 8
8.1 Example 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.2 Example 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.3 Example 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.4 Example 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.5 Example 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.6 Example 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.7 Example 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.8 Example 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.9 Example 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.10 Example 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.11 Example 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.12 Example 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.13 Example 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.14 Example 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1
1 Angular V ariables
When an object moves in a circle, lik e a car on a roundabout or a stone tied to a string being
swung around, we can describe its motion using angles instead of str aight-line distances. Imag-
ine a particleP moving on a circle of r adiusr , with the center at pointO (lik e the hub of a wheel).
W e setO as the origin and dr aw a lineOX as theX -axis. The position ofP is given b y the angle
? between the lineOP (from the center to the particle) and theX -axis. This angle? is called the
angular position, measured in r adians (r ad).
As the particle moves along the circle, ? changes. If it moves to a nearb y point P
'
in a tin y
time?t , the angle increases b y?? . The r ate at which the angle changes is called angular velocity ,
denoted b y? :
? = lim
?t?0
??
?t
=
d?
dt
.
Angular velocity tells us how fast the particle is spinning around the circle, in r adians per
second (r ad/s).
The r ate at which angular velocity changes is called angular acceler ation, denoted b ya :
a =
d?
dt
=
d
2
?
dt
2
.
Angular acceler ation, measured in r ad/s/s, tells us how quickly the spinning is speeding up or
slowing down.
Ifa is constant, we can use these equations, similar to linear motion:
? = ?
0
t+
1
2
at
2
,
? = ?
0
+at,
?
2
= ?
2
0
+2at,
where?
0
is the angular velocity att = 0 ,? is the angular velocity at timet , and? is the angular
position at timet .
The line ar distance tr aveled along the circle (arc length) is related to the angle:
?s = r??.
Dividing b y t ime:
?s
?t
=
??
?t
=? v = r?,
where v is the linear speed (in m/s). This shows that linear speed depends on both how fast
the angle changes (? ) and how far the particle is from the center (r ).
The r ate o f change of linear speed is the tangential acceler ation:
a
t
=
dv
dt
=
d?
dt
=
ra
r
= a.
This acceler ation is along the tangent to the circle (the direction of motion) and changes the
speed, not the direction. Figure 7.1 shows a particleP on a circle with r adiusr , angle? , and the
arc fromP toP
'
.
1.1 Example 1
A particle moves in a circle of r adius 20 cm with a linear speed of 10 m/s. Find the angular
velocity .
Solution: Convert r adius to meters: r = 20 cm = 0.20 m. Use:
? =
v
r
=
10 m/s
0.20 m
= 50 r ad/s.
2
Page 3


Circular Motion
July 5, 2025
Contents
1 Angular V ariables 2
1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Unit V ectors Along the Radius and T angent 3
3 A cceler ation in Circular Motion 3
3.1 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Example 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Dynamics of Circular Motion 6
4.1 Example 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Example 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Circular Turnings and Banking of Roads 6
5.1 Example 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 Example 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Centrifugal F orce 7
6.1 Example 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 Example 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7 Effect of Earth’ s Rotation on Apparent W eight 8
8 W ork ed Out Examples 8
8.1 Example 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.2 Example 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.3 Example 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.4 Example 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.5 Example 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.6 Example 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.7 Example 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.8 Example 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.9 Example 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.10 Example 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.11 Example 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.12 Example 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.13 Example 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.14 Example 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1
1 Angular V ariables
When an object moves in a circle, lik e a car on a roundabout or a stone tied to a string being
swung around, we can describe its motion using angles instead of str aight-line distances. Imag-
ine a particleP moving on a circle of r adiusr , with the center at pointO (lik e the hub of a wheel).
W e setO as the origin and dr aw a lineOX as theX -axis. The position ofP is given b y the angle
? between the lineOP (from the center to the particle) and theX -axis. This angle? is called the
angular position, measured in r adians (r ad).
As the particle moves along the circle, ? changes. If it moves to a nearb y point P
'
in a tin y
time?t , the angle increases b y?? . The r ate at which the angle changes is called angular velocity ,
denoted b y? :
? = lim
?t?0
??
?t
=
d?
dt
.
Angular velocity tells us how fast the particle is spinning around the circle, in r adians per
second (r ad/s).
The r ate at which angular velocity changes is called angular acceler ation, denoted b ya :
a =
d?
dt
=
d
2
?
dt
2
.
Angular acceler ation, measured in r ad/s/s, tells us how quickly the spinning is speeding up or
slowing down.
Ifa is constant, we can use these equations, similar to linear motion:
? = ?
0
t+
1
2
at
2
,
? = ?
0
+at,
?
2
= ?
2
0
+2at,
where?
0
is the angular velocity att = 0 ,? is the angular velocity at timet , and? is the angular
position at timet .
The line ar distance tr aveled along the circle (arc length) is related to the angle:
?s = r??.
Dividing b y t ime:
?s
?t
=
??
?t
=? v = r?,
where v is the linear speed (in m/s). This shows that linear speed depends on both how fast
the angle changes (? ) and how far the particle is from the center (r ).
The r ate o f change of linear speed is the tangential acceler ation:
a
t
=
dv
dt
=
d?
dt
=
ra
r
= a.
This acceler ation is along the tangent to the circle (the direction of motion) and changes the
speed, not the direction. Figure 7.1 shows a particleP on a circle with r adiusr , angle? , and the
arc fromP toP
'
.
1.1 Example 1
A particle moves in a circle of r adius 20 cm with a linear speed of 10 m/s. Find the angular
velocity .
Solution: Convert r adius to meters: r = 20 cm = 0.20 m. Use:
? =
v
r
=
10 m/s
0.20 m
= 50 r ad/s.
2
1.2 Example 2
A particle tr avels in a circle of r adius 20 cm at a speed that uniformly increases. If the speed
changes from 5.0 m/s to 6.0 m/s in 2.0 s, find the angular acceler ation.
Solution: T angential acceler ation:
a
t
=
?v
?t
=
6.0-5.0
2.0
= 0.5 m/s
2
.
Convert r adius: r = 20 cm = 0.20 m. Angular acceler ation:
a =
a
t
r
=
0.5
0.20
= 2.5 r ad/s
2
.
1.3 Example 3
A wheel of r adius 50 cm rotates with an angular velocity of 20 r ad/s. What is the linear speed of
a point on its rim?
Solution: Convert r adius: r = 50 cm = 0.50 m.
v = r? = 0.50×20 = 10 m/s.
2 Un it V ectors Along the Radius and T angent
T o describe circular motion mathematically , we use special directions: r adial (from the center to
the particle) and tangential (along the circle’ s path). Imagine a particleP on a circle with centerO
as the origin;OX as theX -axis, andOY as theY -axis (Figure 7.2). The particle’ s angular position
is? .
W e defin e two unit vectors (vectors of length 1):
- ˆ e
r
: The r adial unit vector , pointing outwar d from O to P . - ˆ e
t
: The tangential unit vector ,
along the tangent atP , in the direction of increasing? (counterclockwise).
T o find these vectors, dr aw lines from P par allel to the axes. The r adial unit vector ˆ e
r
along
OP has components:
ˆ e
r
= cos?ˆ i+ sin?ˆ ?,
whereˆ i and ˆ ? are unit vectors alongX andY . The tangential unit vector ˆ e
t
perpendicular to
ˆ e
r
is:
ˆ e
t
=- sin?ˆ i+ cos?ˆ ?.
These ve ctors help us describe position, velocity , and acceler ation in circular motion.
3 A cceler ation in Circular Motion
A particle moving in a circle is alwa ys acceler ating because its direction changes, even if its speed
is constant. Let’ s derive the acceler ation using the position vector , following the steps from the
original document. Consider a particle P on a circle of r adius r , with center O as the origin
(Figure 7.2). The position vector of the particle is:
? r = O
?
P = r? e
r
= r( cos?
?
i+ sin?
?
j).
T o find t he velocity , differentiate the position vector with respect to time:
? v =
d? r
dt
=
d
dt
[r( cos?
?
i+ sin?
?
j)].
Sincer is constant (the particle sta ys on the circle), we differentiate the components:
? v = r
[(
- sin?
d?
dt
)
?
i+
(
cos?
d?
dt
)
?
j
]
= r
d?
dt
[
- sin?
?
i+ cos?
?
j
]
.
3
Page 4


Circular Motion
July 5, 2025
Contents
1 Angular V ariables 2
1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Unit V ectors Along the Radius and T angent 3
3 A cceler ation in Circular Motion 3
3.1 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Example 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Dynamics of Circular Motion 6
4.1 Example 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Example 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Circular Turnings and Banking of Roads 6
5.1 Example 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 Example 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Centrifugal F orce 7
6.1 Example 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 Example 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7 Effect of Earth’ s Rotation on Apparent W eight 8
8 W ork ed Out Examples 8
8.1 Example 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.2 Example 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.3 Example 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.4 Example 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.5 Example 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.6 Example 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.7 Example 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.8 Example 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.9 Example 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.10 Example 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.11 Example 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.12 Example 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.13 Example 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.14 Example 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1
1 Angular V ariables
When an object moves in a circle, lik e a car on a roundabout or a stone tied to a string being
swung around, we can describe its motion using angles instead of str aight-line distances. Imag-
ine a particleP moving on a circle of r adiusr , with the center at pointO (lik e the hub of a wheel).
W e setO as the origin and dr aw a lineOX as theX -axis. The position ofP is given b y the angle
? between the lineOP (from the center to the particle) and theX -axis. This angle? is called the
angular position, measured in r adians (r ad).
As the particle moves along the circle, ? changes. If it moves to a nearb y point P
'
in a tin y
time?t , the angle increases b y?? . The r ate at which the angle changes is called angular velocity ,
denoted b y? :
? = lim
?t?0
??
?t
=
d?
dt
.
Angular velocity tells us how fast the particle is spinning around the circle, in r adians per
second (r ad/s).
The r ate at which angular velocity changes is called angular acceler ation, denoted b ya :
a =
d?
dt
=
d
2
?
dt
2
.
Angular acceler ation, measured in r ad/s/s, tells us how quickly the spinning is speeding up or
slowing down.
Ifa is constant, we can use these equations, similar to linear motion:
? = ?
0
t+
1
2
at
2
,
? = ?
0
+at,
?
2
= ?
2
0
+2at,
where?
0
is the angular velocity att = 0 ,? is the angular velocity at timet , and? is the angular
position at timet .
The line ar distance tr aveled along the circle (arc length) is related to the angle:
?s = r??.
Dividing b y t ime:
?s
?t
=
??
?t
=? v = r?,
where v is the linear speed (in m/s). This shows that linear speed depends on both how fast
the angle changes (? ) and how far the particle is from the center (r ).
The r ate o f change of linear speed is the tangential acceler ation:
a
t
=
dv
dt
=
d?
dt
=
ra
r
= a.
This acceler ation is along the tangent to the circle (the direction of motion) and changes the
speed, not the direction. Figure 7.1 shows a particleP on a circle with r adiusr , angle? , and the
arc fromP toP
'
.
1.1 Example 1
A particle moves in a circle of r adius 20 cm with a linear speed of 10 m/s. Find the angular
velocity .
Solution: Convert r adius to meters: r = 20 cm = 0.20 m. Use:
? =
v
r
=
10 m/s
0.20 m
= 50 r ad/s.
2
1.2 Example 2
A particle tr avels in a circle of r adius 20 cm at a speed that uniformly increases. If the speed
changes from 5.0 m/s to 6.0 m/s in 2.0 s, find the angular acceler ation.
Solution: T angential acceler ation:
a
t
=
?v
?t
=
6.0-5.0
2.0
= 0.5 m/s
2
.
Convert r adius: r = 20 cm = 0.20 m. Angular acceler ation:
a =
a
t
r
=
0.5
0.20
= 2.5 r ad/s
2
.
1.3 Example 3
A wheel of r adius 50 cm rotates with an angular velocity of 20 r ad/s. What is the linear speed of
a point on its rim?
Solution: Convert r adius: r = 50 cm = 0.50 m.
v = r? = 0.50×20 = 10 m/s.
2 Un it V ectors Along the Radius and T angent
T o describe circular motion mathematically , we use special directions: r adial (from the center to
the particle) and tangential (along the circle’ s path). Imagine a particleP on a circle with centerO
as the origin;OX as theX -axis, andOY as theY -axis (Figure 7.2). The particle’ s angular position
is? .
W e defin e two unit vectors (vectors of length 1):
- ˆ e
r
: The r adial unit vector , pointing outwar d from O to P . - ˆ e
t
: The tangential unit vector ,
along the tangent atP , in the direction of increasing? (counterclockwise).
T o find these vectors, dr aw lines from P par allel to the axes. The r adial unit vector ˆ e
r
along
OP has components:
ˆ e
r
= cos?ˆ i+ sin?ˆ ?,
whereˆ i and ˆ ? are unit vectors alongX andY . The tangential unit vector ˆ e
t
perpendicular to
ˆ e
r
is:
ˆ e
t
=- sin?ˆ i+ cos?ˆ ?.
These ve ctors help us describe position, velocity , and acceler ation in circular motion.
3 A cceler ation in Circular Motion
A particle moving in a circle is alwa ys acceler ating because its direction changes, even if its speed
is constant. Let’ s derive the acceler ation using the position vector , following the steps from the
original document. Consider a particle P on a circle of r adius r , with center O as the origin
(Figure 7.2). The position vector of the particle is:
? r = O
?
P = r? e
r
= r( cos?
?
i+ sin?
?
j).
T o find t he velocity , differentiate the position vector with respect to time:
? v =
d? r
dt
=
d
dt
[r( cos?
?
i+ sin?
?
j)].
Sincer is constant (the particle sta ys on the circle), we differentiate the components:
? v = r
[(
- sin?
d?
dt
)
?
i+
(
cos?
d?
dt
)
?
j
]
= r
d?
dt
[
- sin?
?
i+ cos?
?
j
]
.
3
Since
d?
dt
= ? (angular velocity), and recognizing that- sin?
?
i+ cos?
?
j =? e
t
(the tangential unit
vector), we get:
? v = r?? e
t
.
The velocity is along the tangent to the circle, and its magnitude isv = r? , consistent with our
earlier result.
Now , t o find the acceler ation, differentiate the velocity vector:
? a =
d? v
dt
=
d
dt
[r?(- sin?
?
i+ cos?
?
j)].
Apply t he product rule, noting thatr is constant, but? and? ma y vary with time:
? a = r
[
?
d
dt
[- sin?
?
i+ cos?
?
j]+
d?
dt
(- sin?
?
i+ cos?
?
j)
]
.
Compute the derivative of the tangential unit vector:
d
dt
[- sin?
?
i+ cos?
?
j] =
(
- cos?
d?
dt
)
?
i+
(
- sin?
d?
dt
)
?
j =
d?
dt
(- cos?
?
i- sin?
?
j).
Since
d?
dt
= ? , this becomes:
?(- cos?
?
i- sin?
?
j).
Notice t hat cos?
?
i+ sin?
?
j =? e
r
, so:
- cos?
?
i- sin?
?
j =-? e
r
.
Thus:
?
d
dt
(- sin?
?
i+ cos?
?
j) = ?·?(-? e
r
) =-?
2
? e
r
.
The seco nd term involves
d?
dt
= a , and- sin?
?
i+ cos?
?
j =? e
t
:
d?
dt
(- sin?
?
i+ cos?
?
j) = a? e
t
.
Combine:
? a = r
[
-?
2
? e
r
+a? e
t
]
=-?
2
r? e
r
+ra? e
t
.
Sincera =
dv
dt
(fromv = r? ), the acceler ation is:
? a =-?
2
r? e
r
+
dv
dt
? e
t
.
The a cceler ation has two components:
- Radial acceler ation: a
r
=-?
2
r =-
v
2
r
, directed toward the center (along-? e
r
). - T angential
acceler ation: a
t
=
dv
dt
, alo ng the tangent, changing the speed.
Uniform Circular Motion: If the speed is constant (
dv
dt
= 0 ):
? a =-?
2
r? e
r
, a
c
=
v
2
r
,
directed toward the center , called centripetal acceler ation. The magnitude is:
a
c
= ?
2
r =
v
2
r
,
sincev = r? .
Nonuniform Circular Motion: If the speed changes, both r adial and tangential components
exist. The r adial acceler ation is:
a
r
=-?
2
r =-
v
2
r
,
4
Page 5


Circular Motion
July 5, 2025
Contents
1 Angular V ariables 2
1.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Unit V ectors Along the Radius and T angent 3
3 A cceler ation in Circular Motion 3
3.1 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Example 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Dynamics of Circular Motion 6
4.1 Example 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Example 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Circular Turnings and Banking of Roads 6
5.1 Example 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 Example 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Centrifugal F orce 7
6.1 Example 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 Example 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7 Effect of Earth’ s Rotation on Apparent W eight 8
8 W ork ed Out Examples 8
8.1 Example 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.2 Example 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.3 Example 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.4 Example 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.5 Example 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.6 Example 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.7 Example 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.8 Example 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.9 Example 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.10 Example 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.11 Example 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.12 Example 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.13 Example 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.14 Example 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1
1 Angular V ariables
When an object moves in a circle, lik e a car on a roundabout or a stone tied to a string being
swung around, we can describe its motion using angles instead of str aight-line distances. Imag-
ine a particleP moving on a circle of r adiusr , with the center at pointO (lik e the hub of a wheel).
W e setO as the origin and dr aw a lineOX as theX -axis. The position ofP is given b y the angle
? between the lineOP (from the center to the particle) and theX -axis. This angle? is called the
angular position, measured in r adians (r ad).
As the particle moves along the circle, ? changes. If it moves to a nearb y point P
'
in a tin y
time?t , the angle increases b y?? . The r ate at which the angle changes is called angular velocity ,
denoted b y? :
? = lim
?t?0
??
?t
=
d?
dt
.
Angular velocity tells us how fast the particle is spinning around the circle, in r adians per
second (r ad/s).
The r ate at which angular velocity changes is called angular acceler ation, denoted b ya :
a =
d?
dt
=
d
2
?
dt
2
.
Angular acceler ation, measured in r ad/s/s, tells us how quickly the spinning is speeding up or
slowing down.
Ifa is constant, we can use these equations, similar to linear motion:
? = ?
0
t+
1
2
at
2
,
? = ?
0
+at,
?
2
= ?
2
0
+2at,
where?
0
is the angular velocity att = 0 ,? is the angular velocity at timet , and? is the angular
position at timet .
The line ar distance tr aveled along the circle (arc length) is related to the angle:
?s = r??.
Dividing b y t ime:
?s
?t
=
??
?t
=? v = r?,
where v is the linear speed (in m/s). This shows that linear speed depends on both how fast
the angle changes (? ) and how far the particle is from the center (r ).
The r ate o f change of linear speed is the tangential acceler ation:
a
t
=
dv
dt
=
d?
dt
=
ra
r
= a.
This acceler ation is along the tangent to the circle (the direction of motion) and changes the
speed, not the direction. Figure 7.1 shows a particleP on a circle with r adiusr , angle? , and the
arc fromP toP
'
.
1.1 Example 1
A particle moves in a circle of r adius 20 cm with a linear speed of 10 m/s. Find the angular
velocity .
Solution: Convert r adius to meters: r = 20 cm = 0.20 m. Use:
? =
v
r
=
10 m/s
0.20 m
= 50 r ad/s.
2
1.2 Example 2
A particle tr avels in a circle of r adius 20 cm at a speed that uniformly increases. If the speed
changes from 5.0 m/s to 6.0 m/s in 2.0 s, find the angular acceler ation.
Solution: T angential acceler ation:
a
t
=
?v
?t
=
6.0-5.0
2.0
= 0.5 m/s
2
.
Convert r adius: r = 20 cm = 0.20 m. Angular acceler ation:
a =
a
t
r
=
0.5
0.20
= 2.5 r ad/s
2
.
1.3 Example 3
A wheel of r adius 50 cm rotates with an angular velocity of 20 r ad/s. What is the linear speed of
a point on its rim?
Solution: Convert r adius: r = 50 cm = 0.50 m.
v = r? = 0.50×20 = 10 m/s.
2 Un it V ectors Along the Radius and T angent
T o describe circular motion mathematically , we use special directions: r adial (from the center to
the particle) and tangential (along the circle’ s path). Imagine a particleP on a circle with centerO
as the origin;OX as theX -axis, andOY as theY -axis (Figure 7.2). The particle’ s angular position
is? .
W e defin e two unit vectors (vectors of length 1):
- ˆ e
r
: The r adial unit vector , pointing outwar d from O to P . - ˆ e
t
: The tangential unit vector ,
along the tangent atP , in the direction of increasing? (counterclockwise).
T o find these vectors, dr aw lines from P par allel to the axes. The r adial unit vector ˆ e
r
along
OP has components:
ˆ e
r
= cos?ˆ i+ sin?ˆ ?,
whereˆ i and ˆ ? are unit vectors alongX andY . The tangential unit vector ˆ e
t
perpendicular to
ˆ e
r
is:
ˆ e
t
=- sin?ˆ i+ cos?ˆ ?.
These ve ctors help us describe position, velocity , and acceler ation in circular motion.
3 A cceler ation in Circular Motion
A particle moving in a circle is alwa ys acceler ating because its direction changes, even if its speed
is constant. Let’ s derive the acceler ation using the position vector , following the steps from the
original document. Consider a particle P on a circle of r adius r , with center O as the origin
(Figure 7.2). The position vector of the particle is:
? r = O
?
P = r? e
r
= r( cos?
?
i+ sin?
?
j).
T o find t he velocity , differentiate the position vector with respect to time:
? v =
d? r
dt
=
d
dt
[r( cos?
?
i+ sin?
?
j)].
Sincer is constant (the particle sta ys on the circle), we differentiate the components:
? v = r
[(
- sin?
d?
dt
)
?
i+
(
cos?
d?
dt
)
?
j
]
= r
d?
dt
[
- sin?
?
i+ cos?
?
j
]
.
3
Since
d?
dt
= ? (angular velocity), and recognizing that- sin?
?
i+ cos?
?
j =? e
t
(the tangential unit
vector), we get:
? v = r?? e
t
.
The velocity is along the tangent to the circle, and its magnitude isv = r? , consistent with our
earlier result.
Now , t o find the acceler ation, differentiate the velocity vector:
? a =
d? v
dt
=
d
dt
[r?(- sin?
?
i+ cos?
?
j)].
Apply t he product rule, noting thatr is constant, but? and? ma y vary with time:
? a = r
[
?
d
dt
[- sin?
?
i+ cos?
?
j]+
d?
dt
(- sin?
?
i+ cos?
?
j)
]
.
Compute the derivative of the tangential unit vector:
d
dt
[- sin?
?
i+ cos?
?
j] =
(
- cos?
d?
dt
)
?
i+
(
- sin?
d?
dt
)
?
j =
d?
dt
(- cos?
?
i- sin?
?
j).
Since
d?
dt
= ? , this becomes:
?(- cos?
?
i- sin?
?
j).
Notice t hat cos?
?
i+ sin?
?
j =? e
r
, so:
- cos?
?
i- sin?
?
j =-? e
r
.
Thus:
?
d
dt
(- sin?
?
i+ cos?
?
j) = ?·?(-? e
r
) =-?
2
? e
r
.
The seco nd term involves
d?
dt
= a , and- sin?
?
i+ cos?
?
j =? e
t
:
d?
dt
(- sin?
?
i+ cos?
?
j) = a? e
t
.
Combine:
? a = r
[
-?
2
? e
r
+a? e
t
]
=-?
2
r? e
r
+ra? e
t
.
Sincera =
dv
dt
(fromv = r? ), the acceler ation is:
? a =-?
2
r? e
r
+
dv
dt
? e
t
.
The a cceler ation has two components:
- Radial acceler ation: a
r
=-?
2
r =-
v
2
r
, directed toward the center (along-? e
r
). - T angential
acceler ation: a
t
=
dv
dt
, alo ng the tangent, changing the speed.
Uniform Circular Motion: If the speed is constant (
dv
dt
= 0 ):
? a =-?
2
r? e
r
, a
c
=
v
2
r
,
directed toward the center , called centripetal acceler ation. The magnitude is:
a
c
= ?
2
r =
v
2
r
,
sincev = r? .
Nonuniform Circular Motion: If the speed changes, both r adial and tangential components
exist. The r adial acceler ation is:
a
r
=-?
2
r =-
v
2
r
,
4
and the tangential acceler ation is:
a
t
=
dv
dt
.
The total acceler ation’ s magnitude is:
a =
v
a
2
r
+a
2
t
=
v
(
v
2
r
)
2
+
(
dv
dt
)
2
.
The anglea that the resultant acceler ation mak es with the r adius (Figure 7.3) is:
tana =
a
t
a
r
=
dv
dt
v
2
r
.
3.1 Example 4
Find the magnitude of the linear acceler ation of a particle moving in a circle of r adius 10 cm with
uniform speed, completing the circle in 4 s.
Solution: Convert r adius: r = 10 cm = 0.10 m. Circumference: 2pr = 2p× 0.10 = 0.2p m.
Linear speed:
v =
2pr
t
=
0.2p
4
= 0.05p m/s.
Centripetal acceler ation:
a =
v
2
r
=
(0.05p)
2
0.10
=
0.0025p
2
0.10
= 0.025p
2
˜ 0.247 m/s
2
.
3.2 Example 5
A particle moves in a circle of r adius 20 cm. Its linear speed is v = 2t m/s, where t is in seconds.
Find the r adial and tangential acceler ation att = 3 s.
Solution: Convert r adius: r = 0.20 m. Att = 3 s:
v = 2×3 = 6 m/s.
Radial a cceler ation:
a
r
=
v
2
r
=
6
2
0.20
=
36
0.20
= 180 m/s
2
.
T angential acceler ation:
a
t
=
dv
dt
=
d
dt
(2t) = 2 m/s
2
.
3.3 Example 6
A particle moves in a circle of r adius 0.5 m with constant speed 4 m/s. Find the centripetal accel-
er ation.
Solution:
a
c
=
v
2
r
=
4
2
0.5
=
16
0.5
= 32 m/s
2
.
5
Read More
94 videos|367 docs|98 tests

FAQs on HC Verma Summary: Circular Motion - Physics Class 11 - NEET

1. What is circular motion and how is it defined in physics?
Ans. Circular motion refers to the motion of an object that travels along a circular path. In physics, it is defined by two main types: uniform circular motion, where the object moves at a constant speed, and non-uniform circular motion, where the speed varies. Key concepts include centripetal force, which acts towards the center of the circle, and angular velocity, which describes how quickly the object is rotating around the circle.
2. What is the significance of centripetal force in circular motion?
Ans. Centripetal force is crucial in circular motion as it is the net force acting towards the center of the circular path that keeps the object in motion. Without this force, an object would move in a straight line due to inertia. The magnitude of the centripetal force can be calculated using the formula F = mv^2/r, where m is the mass of the object, v is its velocity, and r is the radius of the circular path.
3. How do angular velocity and linear velocity relate in circular motion?
Ans. Angular velocity and linear velocity are directly related in circular motion. Angular velocity (ω) measures how fast an object is rotating, usually expressed in radians per second. Linear velocity (v) is the speed of the object along the circular path. The relationship can be described by the equation v = ωr, where r is the radius of the circular path. This means that the linear velocity increases with the radius for a constant angular velocity.
4. What are the types of circular motion and how do they differ?
Ans. There are primarily two types of circular motion: uniform and non-uniform circular motion. In uniform circular motion, the object moves with a constant speed along the circular path, resulting in a constant angular velocity. In contrast, non-uniform circular motion involves a change in speed, leading to a varying angular velocity. This distinction is important for analyzing the forces acting on the object and the work done during motion.
5. How is circular motion applicable in real-world scenarios?
Ans. Circular motion is prevalent in various real-world scenarios, including the motion of satellites orbiting Earth, the rotation of planets, and the functioning of amusement park rides like carousels and roller coasters. Understanding circular motion allows for the design of safe and efficient systems in engineering, navigation, and even sports, where athletes often perform circular movements.
Related Searches

Summary

,

HC Verma Summary: Circular Motion | Physics Class 11 - NEET

,

Exam

,

HC Verma Summary: Circular Motion | Physics Class 11 - NEET

,

Important questions

,

video lectures

,

Objective type Questions

,

Free

,

Previous Year Questions with Solutions

,

study material

,

MCQs

,

Sample Paper

,

Extra Questions

,

practice quizzes

,

mock tests for examination

,

shortcuts and tricks

,

HC Verma Summary: Circular Motion | Physics Class 11 - NEET

,

pdf

,

ppt

,

Viva Questions

,

past year papers

,

Semester Notes

;