Class 1 Exam  >  Class 1 Notes  >  Mental Maths  >  Printable Textbook: Patterns - Level 2

Printable Textbook: Patterns - Level 2 | Mental Maths - Class 1 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


ME NT AL
MA T   HS
29
 
Patterns
Summary
1. Simple repeating and increasing/growing patterns consist of a services 
of related elements—each new element related to the previous in some 
manner.
2. Repeating patterns can be extended in both directions.
3. Patterns can be numerical and non-numerical both.
 Example of numerical pattern—
2 4 6 8 10 12 14 16 18 20
 Example of non-numerical pattern
      
1 2 35 4?
? ? ? ?
Page 2


ME NT AL
MA T   HS
29
 
Patterns
Summary
1. Simple repeating and increasing/growing patterns consist of a services 
of related elements—each new element related to the previous in some 
manner.
2. Repeating patterns can be extended in both directions.
3. Patterns can be numerical and non-numerical both.
 Example of numerical pattern—
2 4 6 8 10 12 14 16 18 20
 Example of non-numerical pattern
      
1 2 35 4?
? ? ? ?
ME NT AL
MA T   HS
30
5 10
15 25
21
22 16 20
?
1 35 ?
4 76 10
Select the correct option.
1. 
 (a) (b) (c) (d)
2. 
  (a) (b) (c) (d)
3. 
  (a) (b) (c) (d)
4. 
  (a) (b) (c) (d)
10 20 30 40 ?
40 30 50 10
Page 3


ME NT AL
MA T   HS
29
 
Patterns
Summary
1. Simple repeating and increasing/growing patterns consist of a services 
of related elements—each new element related to the previous in some 
manner.
2. Repeating patterns can be extended in both directions.
3. Patterns can be numerical and non-numerical both.
 Example of numerical pattern—
2 4 6 8 10 12 14 16 18 20
 Example of non-numerical pattern
      
1 2 35 4?
? ? ? ?
ME NT AL
MA T   HS
30
5 10
15 25
21
22 16 20
?
1 35 ?
4 76 10
Select the correct option.
1. 
 (a) (b) (c) (d)
2. 
  (a) (b) (c) (d)
3. 
  (a) (b) (c) (d)
4. 
  (a) (b) (c) (d)
10 20 30 40 ?
40 30 50 10
ME NT AL
MA T   HS
31
5. 
  (a) (b) (c) (d)
6. 
  (a) (b) (c) (d)
7. 
  (a) (b) (c) (d)
8. 
  (a) (b) (c) (d)
(A) (B) (C)
(A) (C) (B) (D)
45 65 75
85
85
75 65 55
?
48 12
12 16 20 10
?
10 8 6
4 2 6 8
?
Page 4


ME NT AL
MA T   HS
29
 
Patterns
Summary
1. Simple repeating and increasing/growing patterns consist of a services 
of related elements—each new element related to the previous in some 
manner.
2. Repeating patterns can be extended in both directions.
3. Patterns can be numerical and non-numerical both.
 Example of numerical pattern—
2 4 6 8 10 12 14 16 18 20
 Example of non-numerical pattern
      
1 2 35 4?
? ? ? ?
ME NT AL
MA T   HS
30
5 10
15 25
21
22 16 20
?
1 35 ?
4 76 10
Select the correct option.
1. 
 (a) (b) (c) (d)
2. 
  (a) (b) (c) (d)
3. 
  (a) (b) (c) (d)
4. 
  (a) (b) (c) (d)
10 20 30 40 ?
40 30 50 10
ME NT AL
MA T   HS
31
5. 
  (a) (b) (c) (d)
6. 
  (a) (b) (c) (d)
7. 
  (a) (b) (c) (d)
8. 
  (a) (b) (c) (d)
(A) (B) (C)
(A) (C) (B) (D)
45 65 75
85
85
75 65 55
?
48 12
12 16 20 10
?
10 8 6
4 2 6 8
?
ME NT AL
MA T   HS
32
9. 
  (a) (b) (c) (d)
10.
  (a) (b) (c) (d)
Select the correct option to complete the given pattern—
11. 
  (a) (b) (c) (d)
12.
  (a) (b) (c) (d)
?
?
Page 5


ME NT AL
MA T   HS
29
 
Patterns
Summary
1. Simple repeating and increasing/growing patterns consist of a services 
of related elements—each new element related to the previous in some 
manner.
2. Repeating patterns can be extended in both directions.
3. Patterns can be numerical and non-numerical both.
 Example of numerical pattern—
2 4 6 8 10 12 14 16 18 20
 Example of non-numerical pattern
      
1 2 35 4?
? ? ? ?
ME NT AL
MA T   HS
30
5 10
15 25
21
22 16 20
?
1 35 ?
4 76 10
Select the correct option.
1. 
 (a) (b) (c) (d)
2. 
  (a) (b) (c) (d)
3. 
  (a) (b) (c) (d)
4. 
  (a) (b) (c) (d)
10 20 30 40 ?
40 30 50 10
ME NT AL
MA T   HS
31
5. 
  (a) (b) (c) (d)
6. 
  (a) (b) (c) (d)
7. 
  (a) (b) (c) (d)
8. 
  (a) (b) (c) (d)
(A) (B) (C)
(A) (C) (B) (D)
45 65 75
85
85
75 65 55
?
48 12
12 16 20 10
?
10 8 6
4 2 6 8
?
ME NT AL
MA T   HS
32
9. 
  (a) (b) (c) (d)
10.
  (a) (b) (c) (d)
Select the correct option to complete the given pattern—
11. 
  (a) (b) (c) (d)
12.
  (a) (b) (c) (d)
?
?
ME NT AL
MA T   HS
33
13. 
  (a) (b) (c) (d)
14. Complete the pattern
  (a) (b) (c) (d)
15. Complete the pattern
  (a) (b) (c) (d)
Answer Key
1. (b) 9. (a)
2. (c) 10. (b)
3. (a) 11. (b)
4. (c) 12. (d)
5. (a) 13. (b)
6. (d) 14. (c)
7. (b) 15. (a)
8. (d)
5P 6Q
7R 9T
8R 8S 7T 9T
Read More
39 videos|158 docs|19 tests

FAQs on Printable Textbook: Patterns - Level 2 - Mental Maths - Class 1

1. What are patterns and why are they important in mathematics?
Ans. Patterns are regular and repeated arrangements of numbers, shapes, or colors that help us make sense of the world around us. In mathematics, identifying patterns is crucial as it aids in problem-solving, reasoning, and developing predictions. Recognizing patterns can simplify complex problems and help in understanding mathematical concepts more deeply.
2. How can patterns be identified in everyday life?
Ans. Patterns can be identified in various aspects of everyday life, such as in nature (e.g., the arrangement of leaves on a stem), in art (e.g., repeating designs), and in daily routines (e.g., schedules). Observing these patterns allows us to make predictions and decisions based on past experiences, enhancing our analytical skills.
3. What are the different types of patterns commonly studied in mathematics?
Ans. Common types of patterns in mathematics include number patterns (e.g., arithmetic and geometric sequences), geometric patterns (e.g., tessellations), and algebraic patterns (e.g., polynomial expressions). Each type has unique properties and rules that can be explored to develop a deeper understanding of mathematical relationships.
4. How can students practice recognizing and creating patterns effectively?
Ans. Students can practice recognizing and creating patterns through various activities, such as using manipulatives (e.g., blocks or beads), engaging in pattern games, or completing worksheets that focus on identifying and extending patterns. Regular practice helps improve their ability to notice patterns in different contexts, enhancing their mathematical skills.
5. What role do patterns play in fields outside of mathematics?
Ans. Patterns play a significant role in fields such as science (e.g., identifying trends in data), art (e.g., creating visually appealing designs), and music (e.g., understanding rhythm and harmony). In each field, recognizing and utilizing patterns can lead to innovative solutions and a better comprehension of complex concepts.
Related Searches

shortcuts and tricks

,

Printable Textbook: Patterns - Level 2 | Mental Maths - Class 1

,

past year papers

,

Viva Questions

,

video lectures

,

Free

,

Sample Paper

,

Printable Textbook: Patterns - Level 2 | Mental Maths - Class 1

,

Semester Notes

,

ppt

,

Extra Questions

,

practice quizzes

,

Important questions

,

pdf

,

mock tests for examination

,

Summary

,

study material

,

Exam

,

Objective type Questions

,

Previous Year Questions with Solutions

,

MCQs

,

Printable Textbook: Patterns - Level 2 | Mental Maths - Class 1

;