Page 1
JEE Main Previous Year Questions
(2025): Parabola
Q1: The axis of a parabola is the line ?? = ?? and its vertex and focus are in the first
quadrant at distances v ?? and ?? v ?? units from the origin, respectively. If the point
(?? , ?? ) lies on the parabola, then a possible value of ?? is :-
A. 4
B. 9
C. 3
D. 8
Ans: B
Solution:
Directrix ?? + ?? = 0
???? = ????
v(1 - 2)
2
+ (?? - 2)
2
=
(1 + ?? )
v 2
2?? 2
+ 8 - 8?? + 2 = ?? 2
+ 1 + 2?? ?? 2
- 10?? + 9 = 0
?? = 9
Page 2
JEE Main Previous Year Questions
(2025): Parabola
Q1: The axis of a parabola is the line ?? = ?? and its vertex and focus are in the first
quadrant at distances v ?? and ?? v ?? units from the origin, respectively. If the point
(?? , ?? ) lies on the parabola, then a possible value of ?? is :-
A. 4
B. 9
C. 3
D. 8
Ans: B
Solution:
Directrix ?? + ?? = 0
???? = ????
v(1 - 2)
2
+ (?? - 2)
2
=
(1 + ?? )
v 2
2?? 2
+ 8 - 8?? + 2 = ?? 2
+ 1 + 2?? ?? 2
- 10?? + 9 = 0
?? = 9
Q2: Let P be the parabola, whose focus is (-?? , ?? ) and directrix is ?? ?? + ?? + ?? = ?? .
Then the sum of the ordinates of the points on P , whose abscissa is -2 , is
A.
3
2
B.
5
2
C.
1
4
D.
3
4
Ans: A
Solution: Equation of parabola
(?? + 2)
2
+ (?? - 1)
2
= (
2?? + ?? + 2
v 5
)
2
5[(?? + 2)
2
+ (?? - 1)
2
] = (2?? + ?? + 2)
2
Put ?? = -2,5(?? - 1)
2
= (?? - 2)
2
5(?? 2
- 2?? + 1) = ?? 2
- 4?? + 4
? 4?? 2
- 6?? + 1 = 0 ? ?? 1
+ ?? 2
=
3
2
Q3: Let the focal chord ???? of the parabola ?? ?? = ?? ?? make an angle of ????
°
with the
positive ?? -axis, where P lies in the first quadrant. If the circle, whose one diameter is
PS, S being the focus of the parabola, touches the ?? -axis at the point (?? , ?? ), then ?? ?? ??
Page 3
JEE Main Previous Year Questions
(2025): Parabola
Q1: The axis of a parabola is the line ?? = ?? and its vertex and focus are in the first
quadrant at distances v ?? and ?? v ?? units from the origin, respectively. If the point
(?? , ?? ) lies on the parabola, then a possible value of ?? is :-
A. 4
B. 9
C. 3
D. 8
Ans: B
Solution:
Directrix ?? + ?? = 0
???? = ????
v(1 - 2)
2
+ (?? - 2)
2
=
(1 + ?? )
v 2
2?? 2
+ 8 - 8?? + 2 = ?? 2
+ 1 + 2?? ?? 2
- 10?? + 9 = 0
?? = 9
Q2: Let P be the parabola, whose focus is (-?? , ?? ) and directrix is ?? ?? + ?? + ?? = ?? .
Then the sum of the ordinates of the points on P , whose abscissa is -2 , is
A.
3
2
B.
5
2
C.
1
4
D.
3
4
Ans: A
Solution: Equation of parabola
(?? + 2)
2
+ (?? - 1)
2
= (
2?? + ?? + 2
v 5
)
2
5[(?? + 2)
2
+ (?? - 1)
2
] = (2?? + ?? + 2)
2
Put ?? = -2,5(?? - 1)
2
= (?? - 2)
2
5(?? 2
- 2?? + 1) = ?? 2
- 4?? + 4
? 4?? 2
- 6?? + 1 = 0 ? ?? 1
+ ?? 2
=
3
2
Q3: Let the focal chord ???? of the parabola ?? ?? = ?? ?? make an angle of ????
°
with the
positive ?? -axis, where P lies in the first quadrant. If the circle, whose one diameter is
PS, S being the focus of the parabola, touches the ?? -axis at the point (?? , ?? ), then ?? ?? ??
is equal to :
A. 15
B. 25
C. 30
D. 20
Ans: A
Solution:
tan 60
°
=
2t - 0
t
2
- 1
= v 3 ? t = v 3
? P(3,2v 3)
Circle :
(?? - 1)(?? - 3) + (?? - 0)(?? - 2v 3) = 0
at ?? = 0
? 3 + ?? 2
- 2v 3?? = 0
? ?? = v 3 = ?? 5?? 2
= 15
Q4: Let the point ?? of the focal chord ???? of the parabola ?? ?? = ???? ?? be (?? , -?? ). If the
focus of the parabola divides the chord PQ in the ratio ?? : ?? , ?????? (?? , ?? ) = ?? , then
?? ?? + ?? ?? is equal to :
A. 17
B. 10
Page 4
JEE Main Previous Year Questions
(2025): Parabola
Q1: The axis of a parabola is the line ?? = ?? and its vertex and focus are in the first
quadrant at distances v ?? and ?? v ?? units from the origin, respectively. If the point
(?? , ?? ) lies on the parabola, then a possible value of ?? is :-
A. 4
B. 9
C. 3
D. 8
Ans: B
Solution:
Directrix ?? + ?? = 0
???? = ????
v(1 - 2)
2
+ (?? - 2)
2
=
(1 + ?? )
v 2
2?? 2
+ 8 - 8?? + 2 = ?? 2
+ 1 + 2?? ?? 2
- 10?? + 9 = 0
?? = 9
Q2: Let P be the parabola, whose focus is (-?? , ?? ) and directrix is ?? ?? + ?? + ?? = ?? .
Then the sum of the ordinates of the points on P , whose abscissa is -2 , is
A.
3
2
B.
5
2
C.
1
4
D.
3
4
Ans: A
Solution: Equation of parabola
(?? + 2)
2
+ (?? - 1)
2
= (
2?? + ?? + 2
v 5
)
2
5[(?? + 2)
2
+ (?? - 1)
2
] = (2?? + ?? + 2)
2
Put ?? = -2,5(?? - 1)
2
= (?? - 2)
2
5(?? 2
- 2?? + 1) = ?? 2
- 4?? + 4
? 4?? 2
- 6?? + 1 = 0 ? ?? 1
+ ?? 2
=
3
2
Q3: Let the focal chord ???? of the parabola ?? ?? = ?? ?? make an angle of ????
°
with the
positive ?? -axis, where P lies in the first quadrant. If the circle, whose one diameter is
PS, S being the focus of the parabola, touches the ?? -axis at the point (?? , ?? ), then ?? ?? ??
is equal to :
A. 15
B. 25
C. 30
D. 20
Ans: A
Solution:
tan 60
°
=
2t - 0
t
2
- 1
= v 3 ? t = v 3
? P(3,2v 3)
Circle :
(?? - 1)(?? - 3) + (?? - 0)(?? - 2v 3) = 0
at ?? = 0
? 3 + ?? 2
- 2v 3?? = 0
? ?? = v 3 = ?? 5?? 2
= 15
Q4: Let the point ?? of the focal chord ???? of the parabola ?? ?? = ???? ?? be (?? , -?? ). If the
focus of the parabola divides the chord PQ in the ratio ?? : ?? , ?????? (?? , ?? ) = ?? , then
?? ?? + ?? ?? is equal to :
A. 17
B. 10
C. 37
D. 26
Ans: A
Solution: y
2
= 16x; a = 4 focus S =(4,0)
2?? 1
= -4
? 2(4)?? 1
= -4
? ?? 1
= -
1
2
? ?? 1
?? 2
= -1
? ?? 2
= 2
? ?? (?? ?? 2
2
, 2?? ?? 2
) = (16,16)
Let, S divides PQ internally in ?? : 1 ratio
?
16?? - 4
?? + 1
= 0
?? =
1
4
=
?? ?? ? ?? 2
+ ?? 2
= 1 + 16 = 17
Q5: The radius of the smallest circle which touches the parabolas ?? = ?? ?? + ?? and ?? =
?? ?? + ?? is
A.
7v 2
2
B.
7v 2
16
Page 5
JEE Main Previous Year Questions
(2025): Parabola
Q1: The axis of a parabola is the line ?? = ?? and its vertex and focus are in the first
quadrant at distances v ?? and ?? v ?? units from the origin, respectively. If the point
(?? , ?? ) lies on the parabola, then a possible value of ?? is :-
A. 4
B. 9
C. 3
D. 8
Ans: B
Solution:
Directrix ?? + ?? = 0
???? = ????
v(1 - 2)
2
+ (?? - 2)
2
=
(1 + ?? )
v 2
2?? 2
+ 8 - 8?? + 2 = ?? 2
+ 1 + 2?? ?? 2
- 10?? + 9 = 0
?? = 9
Q2: Let P be the parabola, whose focus is (-?? , ?? ) and directrix is ?? ?? + ?? + ?? = ?? .
Then the sum of the ordinates of the points on P , whose abscissa is -2 , is
A.
3
2
B.
5
2
C.
1
4
D.
3
4
Ans: A
Solution: Equation of parabola
(?? + 2)
2
+ (?? - 1)
2
= (
2?? + ?? + 2
v 5
)
2
5[(?? + 2)
2
+ (?? - 1)
2
] = (2?? + ?? + 2)
2
Put ?? = -2,5(?? - 1)
2
= (?? - 2)
2
5(?? 2
- 2?? + 1) = ?? 2
- 4?? + 4
? 4?? 2
- 6?? + 1 = 0 ? ?? 1
+ ?? 2
=
3
2
Q3: Let the focal chord ???? of the parabola ?? ?? = ?? ?? make an angle of ????
°
with the
positive ?? -axis, where P lies in the first quadrant. If the circle, whose one diameter is
PS, S being the focus of the parabola, touches the ?? -axis at the point (?? , ?? ), then ?? ?? ??
is equal to :
A. 15
B. 25
C. 30
D. 20
Ans: A
Solution:
tan 60
°
=
2t - 0
t
2
- 1
= v 3 ? t = v 3
? P(3,2v 3)
Circle :
(?? - 1)(?? - 3) + (?? - 0)(?? - 2v 3) = 0
at ?? = 0
? 3 + ?? 2
- 2v 3?? = 0
? ?? = v 3 = ?? 5?? 2
= 15
Q4: Let the point ?? of the focal chord ???? of the parabola ?? ?? = ???? ?? be (?? , -?? ). If the
focus of the parabola divides the chord PQ in the ratio ?? : ?? , ?????? (?? , ?? ) = ?? , then
?? ?? + ?? ?? is equal to :
A. 17
B. 10
C. 37
D. 26
Ans: A
Solution: y
2
= 16x; a = 4 focus S =(4,0)
2?? 1
= -4
? 2(4)?? 1
= -4
? ?? 1
= -
1
2
? ?? 1
?? 2
= -1
? ?? 2
= 2
? ?? (?? ?? 2
2
, 2?? ?? 2
) = (16,16)
Let, S divides PQ internally in ?? : 1 ratio
?
16?? - 4
?? + 1
= 0
?? =
1
4
=
?? ?? ? ?? 2
+ ?? 2
= 1 + 16 = 17
Q5: The radius of the smallest circle which touches the parabolas ?? = ?? ?? + ?? and ?? =
?? ?? + ?? is
A.
7v 2
2
B.
7v 2
16
C.
7v 2
4
D.
7v 2
8
Ans: D
Solution: The given parabolas are symmetric about the line y = x
Tangents at A&B must be parallel to ?? = ?? line, so slope of the tangents = 1
(
????
????
)
min?? = 1 = (
????
????
)
min?? For point B, y = x
2
+ 2
????
????
= 2?? = 1
?? =
1
2
? ?? =
9
4
? Point ?? = (
1
2
,
9
4
) ? Point A = (
9
4
,
1
2
)
AB =
v
(
1
2
-
9
4
)
2
+ (
9
4
-
1
2
)
2
=
v
98
16
=
7v 2
4
Radius ==
7v 2
8
Read More