Page 1
Topic: Matrices
Question bank with solutions
One mark question ( V S A)
1. Define matrix
2. Define a diagonal matrix
3. Define scalar matrix
4. Define symmetric matrix
5. Define skew-symmetric matrix
6.In a matrix [
2 5 19 -17
35 -2
5
2
12
v3 1 -5 17
]
find 1) order of the matrix
2) Write the elements of ?? 13
,?? 21
, ?? 33
, ?? 24
, ?? 23
7. If a matrix 8 elements what is the possible order it can have ?
8. If a matrix 18 elements what is the possible order it can have?
9. construct 2 × 2 matrix [?? ????
] whose elements are given by
1) ?? ????
= (?? + ?? )
2
2) ?? ????
=
(?? +?? )
2
2
10. construct the 2 × 3 matrix whose elements are given by ?? ????
= |?? - ?? |
11. Construct the 3× 2 matrix whose elements are given by ?? ????
=
?? ??
12. Find x, y, z if [
4 3
?? 5
]= [
?? ?? 1 5
]
13. Find x, y, z if [
?? + ?? 2
5 + ?? ????
]= [
6 2
5 8
]
14. Find the matrix x such that 2A + B + X =0 where A = [
-1 2
3 4
] and B = [
3 -2
1 5
]
15. If A = [
1 2 3
2 3 1
] B = [
3 -1 3
-1 0 2
] Find 2A – B
Page 2
Topic: Matrices
Question bank with solutions
One mark question ( V S A)
1. Define matrix
2. Define a diagonal matrix
3. Define scalar matrix
4. Define symmetric matrix
5. Define skew-symmetric matrix
6.In a matrix [
2 5 19 -17
35 -2
5
2
12
v3 1 -5 17
]
find 1) order of the matrix
2) Write the elements of ?? 13
,?? 21
, ?? 33
, ?? 24
, ?? 23
7. If a matrix 8 elements what is the possible order it can have ?
8. If a matrix 18 elements what is the possible order it can have?
9. construct 2 × 2 matrix [?? ????
] whose elements are given by
1) ?? ????
= (?? + ?? )
2
2) ?? ????
=
(?? +?? )
2
2
10. construct the 2 × 3 matrix whose elements are given by ?? ????
= |?? - ?? |
11. Construct the 3× 2 matrix whose elements are given by ?? ????
=
?? ??
12. Find x, y, z if [
4 3
?? 5
]= [
?? ?? 1 5
]
13. Find x, y, z if [
?? + ?? 2
5 + ?? ????
]= [
6 2
5 8
]
14. Find the matrix x such that 2A + B + X =0 where A = [
-1 2
3 4
] and B = [
3 -2
1 5
]
15. If A = [
1 2 3
2 3 1
] B = [
3 -1 3
-1 0 2
] Find 2A – B
16. Find X if Y =[
3 2
1 4
] and 2X+Y = [
1 0
-3 2
]
17. Find X If X+Y = [
7 0
2 5
] and X-Y = [
3 0
0 3
]
18. Simplify cos?? [
cos?? sin?? -sin?? cos?? ] + sin?? [
sin?? -cos?? cos?? sin?? ]
19. Find X If 2[
1 3
0 ?? ] + [
?? 0
1 2
] = [
5 6
1 8
]
20. If A = [
1 2
3 4
] Find A + ?? 1
21. A = [
1 -2 3
0 1 4
] and B = [
0 2 5
6 -3 1
] Find 3A + 2B
22. if A = [
sin?? cos?? -cos?? sin?? ] Verify A A
1
= I
23. if B = [
cos?? sin?? -sin?? cos?? ] verify B B
1
= I
24. If A = [
0
1
2
] B = [
1 5 7
] Find AB
25. Compute 1) [
1 -2
2 3
] [
1 2 3
2 3 1
]
2) [
3 -1 3
-1 0 2
][
2 -3
1 0
3 1
]
26. Find X and Y [
2?? + ?? 3?? 6 4
] = [
6 0
6 4
]
27. What is the number of possible square matrix order 3 with each entries 0 or 1
28. Find X and Y if [
5 - ?? 2?? - 8
0 3
] is a scalar matrix
29. Find X [
4 ?? + 2
2?? - 3 ?? + 1
] is a symmetric matrix
Page 3
Topic: Matrices
Question bank with solutions
One mark question ( V S A)
1. Define matrix
2. Define a diagonal matrix
3. Define scalar matrix
4. Define symmetric matrix
5. Define skew-symmetric matrix
6.In a matrix [
2 5 19 -17
35 -2
5
2
12
v3 1 -5 17
]
find 1) order of the matrix
2) Write the elements of ?? 13
,?? 21
, ?? 33
, ?? 24
, ?? 23
7. If a matrix 8 elements what is the possible order it can have ?
8. If a matrix 18 elements what is the possible order it can have?
9. construct 2 × 2 matrix [?? ????
] whose elements are given by
1) ?? ????
= (?? + ?? )
2
2) ?? ????
=
(?? +?? )
2
2
10. construct the 2 × 3 matrix whose elements are given by ?? ????
= |?? - ?? |
11. Construct the 3× 2 matrix whose elements are given by ?? ????
=
?? ??
12. Find x, y, z if [
4 3
?? 5
]= [
?? ?? 1 5
]
13. Find x, y, z if [
?? + ?? 2
5 + ?? ????
]= [
6 2
5 8
]
14. Find the matrix x such that 2A + B + X =0 where A = [
-1 2
3 4
] and B = [
3 -2
1 5
]
15. If A = [
1 2 3
2 3 1
] B = [
3 -1 3
-1 0 2
] Find 2A – B
16. Find X if Y =[
3 2
1 4
] and 2X+Y = [
1 0
-3 2
]
17. Find X If X+Y = [
7 0
2 5
] and X-Y = [
3 0
0 3
]
18. Simplify cos?? [
cos?? sin?? -sin?? cos?? ] + sin?? [
sin?? -cos?? cos?? sin?? ]
19. Find X If 2[
1 3
0 ?? ] + [
?? 0
1 2
] = [
5 6
1 8
]
20. If A = [
1 2
3 4
] Find A + ?? 1
21. A = [
1 -2 3
0 1 4
] and B = [
0 2 5
6 -3 1
] Find 3A + 2B
22. if A = [
sin?? cos?? -cos?? sin?? ] Verify A A
1
= I
23. if B = [
cos?? sin?? -sin?? cos?? ] verify B B
1
= I
24. If A = [
0
1
2
] B = [
1 5 7
] Find AB
25. Compute 1) [
1 -2
2 3
] [
1 2 3
2 3 1
]
2) [
3 -1 3
-1 0 2
][
2 -3
1 0
3 1
]
26. Find X and Y [
2?? + ?? 3?? 6 4
] = [
6 0
6 4
]
27. What is the number of possible square matrix order 3 with each entries 0 or 1
28. Find X and Y if [
5 - ?? 2?? - 8
0 3
] is a scalar matrix
29. Find X [
4 ?? + 2
2?? - 3 ?? + 1
] is a symmetric matrix
II. Two mark and Three marks questions (SA)
1.Radha , fauzia, simran are the student of 12
th
class Radha has 15 note book and 6 pens ,
Fauzia has 10 books 2 pens and Simran has 13 books and 5 pens express this in to matrix
forms.
2. Construct 3× 2 matrix whose elements are given by ?? ????
=
1
2
|?? - 3?? |
3. Find X,Y,Z from the equation [
?? + ?? + ?? ?? + ?? ?? + ?? ] = [
9
5
7
]
4. Find a,b,c, d From the equation [
?? - ?? 2?? + ?? 2?? - ?? 3?? + ?? ] = = [
-1 5
0 13
]
5. If A = [
8 0
4 -2
3 6
] B = [
2 -2
4 2
-5 1
] Find X such that 2A + 3X = 5B
6. Find X and Y 2[
?? 5
7 ?? - 3
] + [
3 -4
1 2
] = [
7 6
15 14
]
7. Find X and Y if x [
2
3
]+ ?? [
-1
1
]= [
10
5
]
8. Given 3 [
?? ?? ?? ?? ] = [
?? 6
-1 2?? ] + [
4 ?? + ?? ?? + ?? 3
] Fine the values of X,Y,Z and W
9. If ?? ?? = [
cos?? sin?? -sin?? cos?? ] and ?? ?? = [
cos?? sin?? -sin?? cos?? ] Show that ?? ?? ?? ?? = ?? ?? +??
10. If A = [
3 -2
4 -2
] and I = [
1 0
0 1
] Find K If A
2
= KA – 2I
11. If A = [
3 v3 2
4 2 0
] and B =[
2 -1 2
1 2 4
] verify (A + B )
1
= A
1
+B
1
12. For any matrix A with real number entries , A+ A
1
is symmetric matrix and A – A
1
Skew-symmetric matrix
13. For any matrix A = [
1 5
6 7
] verify that A+ A
1
is symmetric matrix
14. For any matrix A = [
1 5
6 7
] verify that A – A
1
Skew-symmetric matrix
15. If A and B be the invertible matrices of same order then (AB)
-1
= B
-1
A
-1
16. By using elementary operation Find the inverse of the matrix [
1 2
2 -1
]
Page 4
Topic: Matrices
Question bank with solutions
One mark question ( V S A)
1. Define matrix
2. Define a diagonal matrix
3. Define scalar matrix
4. Define symmetric matrix
5. Define skew-symmetric matrix
6.In a matrix [
2 5 19 -17
35 -2
5
2
12
v3 1 -5 17
]
find 1) order of the matrix
2) Write the elements of ?? 13
,?? 21
, ?? 33
, ?? 24
, ?? 23
7. If a matrix 8 elements what is the possible order it can have ?
8. If a matrix 18 elements what is the possible order it can have?
9. construct 2 × 2 matrix [?? ????
] whose elements are given by
1) ?? ????
= (?? + ?? )
2
2) ?? ????
=
(?? +?? )
2
2
10. construct the 2 × 3 matrix whose elements are given by ?? ????
= |?? - ?? |
11. Construct the 3× 2 matrix whose elements are given by ?? ????
=
?? ??
12. Find x, y, z if [
4 3
?? 5
]= [
?? ?? 1 5
]
13. Find x, y, z if [
?? + ?? 2
5 + ?? ????
]= [
6 2
5 8
]
14. Find the matrix x such that 2A + B + X =0 where A = [
-1 2
3 4
] and B = [
3 -2
1 5
]
15. If A = [
1 2 3
2 3 1
] B = [
3 -1 3
-1 0 2
] Find 2A – B
16. Find X if Y =[
3 2
1 4
] and 2X+Y = [
1 0
-3 2
]
17. Find X If X+Y = [
7 0
2 5
] and X-Y = [
3 0
0 3
]
18. Simplify cos?? [
cos?? sin?? -sin?? cos?? ] + sin?? [
sin?? -cos?? cos?? sin?? ]
19. Find X If 2[
1 3
0 ?? ] + [
?? 0
1 2
] = [
5 6
1 8
]
20. If A = [
1 2
3 4
] Find A + ?? 1
21. A = [
1 -2 3
0 1 4
] and B = [
0 2 5
6 -3 1
] Find 3A + 2B
22. if A = [
sin?? cos?? -cos?? sin?? ] Verify A A
1
= I
23. if B = [
cos?? sin?? -sin?? cos?? ] verify B B
1
= I
24. If A = [
0
1
2
] B = [
1 5 7
] Find AB
25. Compute 1) [
1 -2
2 3
] [
1 2 3
2 3 1
]
2) [
3 -1 3
-1 0 2
][
2 -3
1 0
3 1
]
26. Find X and Y [
2?? + ?? 3?? 6 4
] = [
6 0
6 4
]
27. What is the number of possible square matrix order 3 with each entries 0 or 1
28. Find X and Y if [
5 - ?? 2?? - 8
0 3
] is a scalar matrix
29. Find X [
4 ?? + 2
2?? - 3 ?? + 1
] is a symmetric matrix
II. Two mark and Three marks questions (SA)
1.Radha , fauzia, simran are the student of 12
th
class Radha has 15 note book and 6 pens ,
Fauzia has 10 books 2 pens and Simran has 13 books and 5 pens express this in to matrix
forms.
2. Construct 3× 2 matrix whose elements are given by ?? ????
=
1
2
|?? - 3?? |
3. Find X,Y,Z from the equation [
?? + ?? + ?? ?? + ?? ?? + ?? ] = [
9
5
7
]
4. Find a,b,c, d From the equation [
?? - ?? 2?? + ?? 2?? - ?? 3?? + ?? ] = = [
-1 5
0 13
]
5. If A = [
8 0
4 -2
3 6
] B = [
2 -2
4 2
-5 1
] Find X such that 2A + 3X = 5B
6. Find X and Y 2[
?? 5
7 ?? - 3
] + [
3 -4
1 2
] = [
7 6
15 14
]
7. Find X and Y if x [
2
3
]+ ?? [
-1
1
]= [
10
5
]
8. Given 3 [
?? ?? ?? ?? ] = [
?? 6
-1 2?? ] + [
4 ?? + ?? ?? + ?? 3
] Fine the values of X,Y,Z and W
9. If ?? ?? = [
cos?? sin?? -sin?? cos?? ] and ?? ?? = [
cos?? sin?? -sin?? cos?? ] Show that ?? ?? ?? ?? = ?? ?? +??
10. If A = [
3 -2
4 -2
] and I = [
1 0
0 1
] Find K If A
2
= KA – 2I
11. If A = [
3 v3 2
4 2 0
] and B =[
2 -1 2
1 2 4
] verify (A + B )
1
= A
1
+B
1
12. For any matrix A with real number entries , A+ A
1
is symmetric matrix and A – A
1
Skew-symmetric matrix
13. For any matrix A = [
1 5
6 7
] verify that A+ A
1
is symmetric matrix
14. For any matrix A = [
1 5
6 7
] verify that A – A
1
Skew-symmetric matrix
15. If A and B be the invertible matrices of same order then (AB)
-1
= B
-1
A
-1
16. By using elementary operation Find the inverse of the matrix [
1 2
2 -1
]
17. By using elementary operation Find the inverse of the matrix [
1 3
2 7
]
18. By using elementary operation Find the inverse of the matrix [
1 -2
2 1
]
19. Find P
-1
if it exists and P = [
10 -2
-5 1
]
20. If A = [
3 1
-1 2
] Show that A
2
-5A +7I = 0
21. If A = [
2 3
0 -4
] and B = [
1 5
2 0
] Show that (AB)
1
= B
1
A
1
III. Five mark questions ( LA)
1.If A = [
1 1 -1
2 0 3
3 -1 2
] B = [
1 3
0 2
-1 4
] and C =[
1 2 3 -4
2 0 -2 1
]
Find A B , BC and show that (AB )C = A(BC)
2. If A = [
0 6 7
-6 0 8
7 -8 0
] B = [
0 1 1
1 0 2
1 2 0
] C = [
2
-2
3
] calculate AC, BC and (A+B) C
Deduce that (A+B) C = AC + BC
3. If A = [
1 2 3
3 -2 1
4 2 1
] Show that A
3
– 23A - 40 I = 0
4. If A = [
1 2 -3
5 0 2
1 -1 1
] B = [
3 -1 2
4 2 5
2 0 3
] and C = [
4 1 2
0 3 2
1 -2 3
]
verify A+ (B-C) = (A+B ) –C
5. If A =
[
2
3
1
5
3
1
3
2
3
4
3
7
3
2
2
3
]
and B =
[
2
5
3
5
1
1
5
2
5
4
5
7
5
6
5
2
5
]
find 3A – 5B
6. If A = [
2 0 1
2 1 3
1 -1 0
] find A
2
– 5 A + 6 I ?
Page 5
Topic: Matrices
Question bank with solutions
One mark question ( V S A)
1. Define matrix
2. Define a diagonal matrix
3. Define scalar matrix
4. Define symmetric matrix
5. Define skew-symmetric matrix
6.In a matrix [
2 5 19 -17
35 -2
5
2
12
v3 1 -5 17
]
find 1) order of the matrix
2) Write the elements of ?? 13
,?? 21
, ?? 33
, ?? 24
, ?? 23
7. If a matrix 8 elements what is the possible order it can have ?
8. If a matrix 18 elements what is the possible order it can have?
9. construct 2 × 2 matrix [?? ????
] whose elements are given by
1) ?? ????
= (?? + ?? )
2
2) ?? ????
=
(?? +?? )
2
2
10. construct the 2 × 3 matrix whose elements are given by ?? ????
= |?? - ?? |
11. Construct the 3× 2 matrix whose elements are given by ?? ????
=
?? ??
12. Find x, y, z if [
4 3
?? 5
]= [
?? ?? 1 5
]
13. Find x, y, z if [
?? + ?? 2
5 + ?? ????
]= [
6 2
5 8
]
14. Find the matrix x such that 2A + B + X =0 where A = [
-1 2
3 4
] and B = [
3 -2
1 5
]
15. If A = [
1 2 3
2 3 1
] B = [
3 -1 3
-1 0 2
] Find 2A – B
16. Find X if Y =[
3 2
1 4
] and 2X+Y = [
1 0
-3 2
]
17. Find X If X+Y = [
7 0
2 5
] and X-Y = [
3 0
0 3
]
18. Simplify cos?? [
cos?? sin?? -sin?? cos?? ] + sin?? [
sin?? -cos?? cos?? sin?? ]
19. Find X If 2[
1 3
0 ?? ] + [
?? 0
1 2
] = [
5 6
1 8
]
20. If A = [
1 2
3 4
] Find A + ?? 1
21. A = [
1 -2 3
0 1 4
] and B = [
0 2 5
6 -3 1
] Find 3A + 2B
22. if A = [
sin?? cos?? -cos?? sin?? ] Verify A A
1
= I
23. if B = [
cos?? sin?? -sin?? cos?? ] verify B B
1
= I
24. If A = [
0
1
2
] B = [
1 5 7
] Find AB
25. Compute 1) [
1 -2
2 3
] [
1 2 3
2 3 1
]
2) [
3 -1 3
-1 0 2
][
2 -3
1 0
3 1
]
26. Find X and Y [
2?? + ?? 3?? 6 4
] = [
6 0
6 4
]
27. What is the number of possible square matrix order 3 with each entries 0 or 1
28. Find X and Y if [
5 - ?? 2?? - 8
0 3
] is a scalar matrix
29. Find X [
4 ?? + 2
2?? - 3 ?? + 1
] is a symmetric matrix
II. Two mark and Three marks questions (SA)
1.Radha , fauzia, simran are the student of 12
th
class Radha has 15 note book and 6 pens ,
Fauzia has 10 books 2 pens and Simran has 13 books and 5 pens express this in to matrix
forms.
2. Construct 3× 2 matrix whose elements are given by ?? ????
=
1
2
|?? - 3?? |
3. Find X,Y,Z from the equation [
?? + ?? + ?? ?? + ?? ?? + ?? ] = [
9
5
7
]
4. Find a,b,c, d From the equation [
?? - ?? 2?? + ?? 2?? - ?? 3?? + ?? ] = = [
-1 5
0 13
]
5. If A = [
8 0
4 -2
3 6
] B = [
2 -2
4 2
-5 1
] Find X such that 2A + 3X = 5B
6. Find X and Y 2[
?? 5
7 ?? - 3
] + [
3 -4
1 2
] = [
7 6
15 14
]
7. Find X and Y if x [
2
3
]+ ?? [
-1
1
]= [
10
5
]
8. Given 3 [
?? ?? ?? ?? ] = [
?? 6
-1 2?? ] + [
4 ?? + ?? ?? + ?? 3
] Fine the values of X,Y,Z and W
9. If ?? ?? = [
cos?? sin?? -sin?? cos?? ] and ?? ?? = [
cos?? sin?? -sin?? cos?? ] Show that ?? ?? ?? ?? = ?? ?? +??
10. If A = [
3 -2
4 -2
] and I = [
1 0
0 1
] Find K If A
2
= KA – 2I
11. If A = [
3 v3 2
4 2 0
] and B =[
2 -1 2
1 2 4
] verify (A + B )
1
= A
1
+B
1
12. For any matrix A with real number entries , A+ A
1
is symmetric matrix and A – A
1
Skew-symmetric matrix
13. For any matrix A = [
1 5
6 7
] verify that A+ A
1
is symmetric matrix
14. For any matrix A = [
1 5
6 7
] verify that A – A
1
Skew-symmetric matrix
15. If A and B be the invertible matrices of same order then (AB)
-1
= B
-1
A
-1
16. By using elementary operation Find the inverse of the matrix [
1 2
2 -1
]
17. By using elementary operation Find the inverse of the matrix [
1 3
2 7
]
18. By using elementary operation Find the inverse of the matrix [
1 -2
2 1
]
19. Find P
-1
if it exists and P = [
10 -2
-5 1
]
20. If A = [
3 1
-1 2
] Show that A
2
-5A +7I = 0
21. If A = [
2 3
0 -4
] and B = [
1 5
2 0
] Show that (AB)
1
= B
1
A
1
III. Five mark questions ( LA)
1.If A = [
1 1 -1
2 0 3
3 -1 2
] B = [
1 3
0 2
-1 4
] and C =[
1 2 3 -4
2 0 -2 1
]
Find A B , BC and show that (AB )C = A(BC)
2. If A = [
0 6 7
-6 0 8
7 -8 0
] B = [
0 1 1
1 0 2
1 2 0
] C = [
2
-2
3
] calculate AC, BC and (A+B) C
Deduce that (A+B) C = AC + BC
3. If A = [
1 2 3
3 -2 1
4 2 1
] Show that A
3
– 23A - 40 I = 0
4. If A = [
1 2 -3
5 0 2
1 -1 1
] B = [
3 -1 2
4 2 5
2 0 3
] and C = [
4 1 2
0 3 2
1 -2 3
]
verify A+ (B-C) = (A+B ) –C
5. If A =
[
2
3
1
5
3
1
3
2
3
4
3
7
3
2
2
3
]
and B =
[
2
5
3
5
1
1
5
2
5
4
5
7
5
6
5
2
5
]
find 3A – 5B
6. If A = [
2 0 1
2 1 3
1 -1 0
] find A
2
– 5 A + 6 I ?
7. If A = [
1 0 2
0 2 1
2 0 3
] prove that A
3
– 6A
2
+ 7A + 2I = 0
8. Express the matrix B = [
2 -2 -4
-1 3 4
1 -2 -3
] Find the sum of symmetric and skew-
symmetric matrix
9. Express the matrix B = [
6 -2 2
-2 3 -1
2 -1 3
] Find the sum of symmetric and skew-
symmetric matrix
10. If A = [
1 2
2 1
] B = [
2 0
1 3
] C = [
1 1
2 3
] calculate AB , BC, A(B+C)
Verify that AB + AC = A(B+C)
11. If F(x) = [
cos?? -sin?? 0
sin?? cos?? 0
0 0 1
] show that F(x) F(y) = F(x+y)
12. If A =[
-2
4
5
] and B = [
1 3 -6
] verify (AB)
1
= B
1
A
1
13. If A = [
cos?? sin?? -sin?? cos?? ] Prove that A
n
= [
cos???? sin????
-sin???? cos????
]
********
Read More