Commerce Exam  >  Commerce Notes  >  Mathematics (Maths) Class 11  >  NCERT Textbook: Straight Lines

NCERT Textbook: Straight Lines | Mathematics (Maths) Class 11 - Commerce PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


vG G G G G     eometry, as a logical system, is a means and even the most powerful
means to make children feel the strength of the human spirit that is
of their own spirit.  – H. FREUDENTHALv
9.1  Introduction
W e are familiar with two-dimensional coordinate geometry
from earlier classes. Mainly, it is a combination of algebra
and geometry. A systematic study of geometry by the use
of algebra was first carried out by celebrated French
philosopher and mathematician René Descartes, in his book
‘La Géométry, published in 1637. This book introduced the
notion of the equation of a curve and related analytical
methods into the study of geometry. The resulting
combination of analysis and geometry is referred now as
analytical geometry. In the earlier classes, we initiated
the study of coordinate geometry, where we   studied about
coordinate axes, coordinate plane, plotting of points in a
plane, distance between two points, section formulae, etc. All these concepts are the
basics of coordinate geometry.
Let us have a brief recall of coordinate geometry done in earlier classes. To
recapitulate, the location of the points (6, – 4) and
(3, 0) in the XY -plane is shown in Fig 9.1.
We may note that the point (6, – 4) is at 6 units
distance from the y-axis measured along the positive
x-axis and at 4 units distance from the x-axis
measured along the negative y-axis. Similarly, the
point (3, 0) is at 3 units distance from the y-axis
measured along  the positive x-axis and has zero
distance from the x-axis.
We also studied there following important
formulae:
9 Chapter
STRAIGHT LINES
René Descartes
 (1596 -1650)
Fig 9.1
2024-25
Page 2


vG G G G G     eometry, as a logical system, is a means and even the most powerful
means to make children feel the strength of the human spirit that is
of their own spirit.  – H. FREUDENTHALv
9.1  Introduction
W e are familiar with two-dimensional coordinate geometry
from earlier classes. Mainly, it is a combination of algebra
and geometry. A systematic study of geometry by the use
of algebra was first carried out by celebrated French
philosopher and mathematician René Descartes, in his book
‘La Géométry, published in 1637. This book introduced the
notion of the equation of a curve and related analytical
methods into the study of geometry. The resulting
combination of analysis and geometry is referred now as
analytical geometry. In the earlier classes, we initiated
the study of coordinate geometry, where we   studied about
coordinate axes, coordinate plane, plotting of points in a
plane, distance between two points, section formulae, etc. All these concepts are the
basics of coordinate geometry.
Let us have a brief recall of coordinate geometry done in earlier classes. To
recapitulate, the location of the points (6, – 4) and
(3, 0) in the XY -plane is shown in Fig 9.1.
We may note that the point (6, – 4) is at 6 units
distance from the y-axis measured along the positive
x-axis and at 4 units distance from the x-axis
measured along the negative y-axis. Similarly, the
point (3, 0) is at 3 units distance from the y-axis
measured along  the positive x-axis and has zero
distance from the x-axis.
We also studied there following important
formulae:
9 Chapter
STRAIGHT LINES
René Descartes
 (1596 -1650)
Fig 9.1
2024-25
152 MATHEMATICS
I. Distance between the points P (x
1,  
y
1
) and Q (x
2
, y
2
) is
( ) ( ) 1
2
2
2 2 1
PQ x – x y – y = +
For example, distance between the points (6, – 4) and (3, 0) is
( ) ( )
2 2
3 6 0 4 9 16 5 - + + = + = units.
II. The coordinates of a point dividing the line segment joining the points (x
1,  
y
1
)
and (x
2
, y
2
) internally, in the ratio m: n are 
?
?
?
?
?
?
?
?
+
+
+
+
n m
y n y m
n m
x
n
x
m
1 2 1 2
, .
For example, the coordinates of the point which divides the line segment joining
A  (1, –3) and B (–3, 9) internally, in the ratio 1: 3 are given by 
1 ( 3) 3 1
0
1 3
. .
x
- +
= =
+
and 
( ) 1.9 + 3. –3
= = 0.
1 + 3
y
III.   In particular, if m = n, the coordinates of the mid-point of the line segment
joining the points (x
1,  
y
1
) and (x
2
, y
2
) are ?
?
?
?
?
? + +
2
,
2
2 1 2 1
y y
x x
.
IV . Area of the triangle whose vertices are (x
1,  
y
1
), (x
2
, y
2
) and (x
3
, y
3
) is
( ) ( ) ( ) 1 2 3
2 3 3 1 1 2
1
2
- + - + - y y y y y y
x x x .
For example, the area of the triangle, whose vertices are (4, 4), (3, – 2) and (– 3, 16) is
54
1
4( 2 16) 3(16 4) ( 3)(4 2) 27.
2 2
-
- - + - + - + = =
Remark If the area of the triangle ABC is zero, then three points A, B and C lie on
a line, i.e., they are collinear.
In the this Chapter, we shall continue the study of coordinate geometry to study
properties of the simplest geometric figure – straight line. Despite its simplicity, the
line is a vital concept of geometry and enters into our daily experiences in numerous
interesting and useful ways. Main focus is on representing the line algebraically, for
which slope is most essential.
9.2  Slope of a Line
A line in a coordinate plane forms two angles with the x-axis, which are supplementary.
2024-25
Page 3


vG G G G G     eometry, as a logical system, is a means and even the most powerful
means to make children feel the strength of the human spirit that is
of their own spirit.  – H. FREUDENTHALv
9.1  Introduction
W e are familiar with two-dimensional coordinate geometry
from earlier classes. Mainly, it is a combination of algebra
and geometry. A systematic study of geometry by the use
of algebra was first carried out by celebrated French
philosopher and mathematician René Descartes, in his book
‘La Géométry, published in 1637. This book introduced the
notion of the equation of a curve and related analytical
methods into the study of geometry. The resulting
combination of analysis and geometry is referred now as
analytical geometry. In the earlier classes, we initiated
the study of coordinate geometry, where we   studied about
coordinate axes, coordinate plane, plotting of points in a
plane, distance between two points, section formulae, etc. All these concepts are the
basics of coordinate geometry.
Let us have a brief recall of coordinate geometry done in earlier classes. To
recapitulate, the location of the points (6, – 4) and
(3, 0) in the XY -plane is shown in Fig 9.1.
We may note that the point (6, – 4) is at 6 units
distance from the y-axis measured along the positive
x-axis and at 4 units distance from the x-axis
measured along the negative y-axis. Similarly, the
point (3, 0) is at 3 units distance from the y-axis
measured along  the positive x-axis and has zero
distance from the x-axis.
We also studied there following important
formulae:
9 Chapter
STRAIGHT LINES
René Descartes
 (1596 -1650)
Fig 9.1
2024-25
152 MATHEMATICS
I. Distance between the points P (x
1,  
y
1
) and Q (x
2
, y
2
) is
( ) ( ) 1
2
2
2 2 1
PQ x – x y – y = +
For example, distance between the points (6, – 4) and (3, 0) is
( ) ( )
2 2
3 6 0 4 9 16 5 - + + = + = units.
II. The coordinates of a point dividing the line segment joining the points (x
1,  
y
1
)
and (x
2
, y
2
) internally, in the ratio m: n are 
?
?
?
?
?
?
?
?
+
+
+
+
n m
y n y m
n m
x
n
x
m
1 2 1 2
, .
For example, the coordinates of the point which divides the line segment joining
A  (1, –3) and B (–3, 9) internally, in the ratio 1: 3 are given by 
1 ( 3) 3 1
0
1 3
. .
x
- +
= =
+
and 
( ) 1.9 + 3. –3
= = 0.
1 + 3
y
III.   In particular, if m = n, the coordinates of the mid-point of the line segment
joining the points (x
1,  
y
1
) and (x
2
, y
2
) are ?
?
?
?
?
? + +
2
,
2
2 1 2 1
y y
x x
.
IV . Area of the triangle whose vertices are (x
1,  
y
1
), (x
2
, y
2
) and (x
3
, y
3
) is
( ) ( ) ( ) 1 2 3
2 3 3 1 1 2
1
2
- + - + - y y y y y y
x x x .
For example, the area of the triangle, whose vertices are (4, 4), (3, – 2) and (– 3, 16) is
54
1
4( 2 16) 3(16 4) ( 3)(4 2) 27.
2 2
-
- - + - + - + = =
Remark If the area of the triangle ABC is zero, then three points A, B and C lie on
a line, i.e., they are collinear.
In the this Chapter, we shall continue the study of coordinate geometry to study
properties of the simplest geometric figure – straight line. Despite its simplicity, the
line is a vital concept of geometry and enters into our daily experiences in numerous
interesting and useful ways. Main focus is on representing the line algebraically, for
which slope is most essential.
9.2  Slope of a Line
A line in a coordinate plane forms two angles with the x-axis, which are supplementary.
2024-25
STRAIGHT LINES       153
The angle (say) ? made by the line l with positive
direction of x-axis and measured anti clockwise
is called the inclination of the line. Obviously
0° = ? = 180° (Fig 9.2).
We observe that lines parallel to x-axis, or
coinciding with x-axis, have inclination of 0°. The
inclination of a vertical line (parallel to or
coinciding with y-axis) is 90°.
Definition 1 If ? is the inclination of a line
l, then tan ? is called the slope or gradient of
the line l.
The slope of a line whose inclination is 90° is not
defined.
The slope of a line is denoted by m.
Thus, m = tan ?, ? ? 90°
It may be observed that the slope of x-axis is zero and slope of y-axis is not defined.
9.2.1 Slope of a line when coordinates of any two points on the line are given
We know that a line is completely determined when we are given two points on it.
Hence, we proceed to find the slope of a
line in terms of the coordinates of two points
on the line.
Let P(x
1
, y
1
) and Q(x
2
, y
2
) be two
points on non-vertical line l whose inclination
is ?. Obviously, x
1
 ? x
2
, otherwise the line
will become perpendicular to x-axis and its
slope will not be defined. The inclination of
the line l may be acute or obtuse. Let us
take these two cases.
Draw perpendicular QR to x-axis and
PM perpendicular to RQ as shown in
Figs. 9.3 (i) and (ii).
Case 1 When angle  ? is acute:
In Fig 9.3 (i), ?MPQ =  ?. ... (1)
Therefore, slope of line l = m = tan ?.
But in ?MPQ, we have 
2 1
2 1
MQ
tan? .
MP
y y
x x
- = =
- ... (2)
Fig 9.2
Fig 9. 3 (i)
2024-25
Page 4


vG G G G G     eometry, as a logical system, is a means and even the most powerful
means to make children feel the strength of the human spirit that is
of their own spirit.  – H. FREUDENTHALv
9.1  Introduction
W e are familiar with two-dimensional coordinate geometry
from earlier classes. Mainly, it is a combination of algebra
and geometry. A systematic study of geometry by the use
of algebra was first carried out by celebrated French
philosopher and mathematician René Descartes, in his book
‘La Géométry, published in 1637. This book introduced the
notion of the equation of a curve and related analytical
methods into the study of geometry. The resulting
combination of analysis and geometry is referred now as
analytical geometry. In the earlier classes, we initiated
the study of coordinate geometry, where we   studied about
coordinate axes, coordinate plane, plotting of points in a
plane, distance between two points, section formulae, etc. All these concepts are the
basics of coordinate geometry.
Let us have a brief recall of coordinate geometry done in earlier classes. To
recapitulate, the location of the points (6, – 4) and
(3, 0) in the XY -plane is shown in Fig 9.1.
We may note that the point (6, – 4) is at 6 units
distance from the y-axis measured along the positive
x-axis and at 4 units distance from the x-axis
measured along the negative y-axis. Similarly, the
point (3, 0) is at 3 units distance from the y-axis
measured along  the positive x-axis and has zero
distance from the x-axis.
We also studied there following important
formulae:
9 Chapter
STRAIGHT LINES
René Descartes
 (1596 -1650)
Fig 9.1
2024-25
152 MATHEMATICS
I. Distance between the points P (x
1,  
y
1
) and Q (x
2
, y
2
) is
( ) ( ) 1
2
2
2 2 1
PQ x – x y – y = +
For example, distance between the points (6, – 4) and (3, 0) is
( ) ( )
2 2
3 6 0 4 9 16 5 - + + = + = units.
II. The coordinates of a point dividing the line segment joining the points (x
1,  
y
1
)
and (x
2
, y
2
) internally, in the ratio m: n are 
?
?
?
?
?
?
?
?
+
+
+
+
n m
y n y m
n m
x
n
x
m
1 2 1 2
, .
For example, the coordinates of the point which divides the line segment joining
A  (1, –3) and B (–3, 9) internally, in the ratio 1: 3 are given by 
1 ( 3) 3 1
0
1 3
. .
x
- +
= =
+
and 
( ) 1.9 + 3. –3
= = 0.
1 + 3
y
III.   In particular, if m = n, the coordinates of the mid-point of the line segment
joining the points (x
1,  
y
1
) and (x
2
, y
2
) are ?
?
?
?
?
? + +
2
,
2
2 1 2 1
y y
x x
.
IV . Area of the triangle whose vertices are (x
1,  
y
1
), (x
2
, y
2
) and (x
3
, y
3
) is
( ) ( ) ( ) 1 2 3
2 3 3 1 1 2
1
2
- + - + - y y y y y y
x x x .
For example, the area of the triangle, whose vertices are (4, 4), (3, – 2) and (– 3, 16) is
54
1
4( 2 16) 3(16 4) ( 3)(4 2) 27.
2 2
-
- - + - + - + = =
Remark If the area of the triangle ABC is zero, then three points A, B and C lie on
a line, i.e., they are collinear.
In the this Chapter, we shall continue the study of coordinate geometry to study
properties of the simplest geometric figure – straight line. Despite its simplicity, the
line is a vital concept of geometry and enters into our daily experiences in numerous
interesting and useful ways. Main focus is on representing the line algebraically, for
which slope is most essential.
9.2  Slope of a Line
A line in a coordinate plane forms two angles with the x-axis, which are supplementary.
2024-25
STRAIGHT LINES       153
The angle (say) ? made by the line l with positive
direction of x-axis and measured anti clockwise
is called the inclination of the line. Obviously
0° = ? = 180° (Fig 9.2).
We observe that lines parallel to x-axis, or
coinciding with x-axis, have inclination of 0°. The
inclination of a vertical line (parallel to or
coinciding with y-axis) is 90°.
Definition 1 If ? is the inclination of a line
l, then tan ? is called the slope or gradient of
the line l.
The slope of a line whose inclination is 90° is not
defined.
The slope of a line is denoted by m.
Thus, m = tan ?, ? ? 90°
It may be observed that the slope of x-axis is zero and slope of y-axis is not defined.
9.2.1 Slope of a line when coordinates of any two points on the line are given
We know that a line is completely determined when we are given two points on it.
Hence, we proceed to find the slope of a
line in terms of the coordinates of two points
on the line.
Let P(x
1
, y
1
) and Q(x
2
, y
2
) be two
points on non-vertical line l whose inclination
is ?. Obviously, x
1
 ? x
2
, otherwise the line
will become perpendicular to x-axis and its
slope will not be defined. The inclination of
the line l may be acute or obtuse. Let us
take these two cases.
Draw perpendicular QR to x-axis and
PM perpendicular to RQ as shown in
Figs. 9.3 (i) and (ii).
Case 1 When angle  ? is acute:
In Fig 9.3 (i), ?MPQ =  ?. ... (1)
Therefore, slope of line l = m = tan ?.
But in ?MPQ, we have 
2 1
2 1
MQ
tan? .
MP
y y
x x
- = =
- ... (2)
Fig 9.2
Fig 9. 3 (i)
2024-25
154 MATHEMATICS
From equations (1) and (2), we have
2 1
2 1
.
y y
m
x x
- =
- Case II  When angle ? is obtuse:
In Fig 9.3 (ii), we have
 ?MPQ = 180° –  ?.
Therefore,  ? = 180° – ?MPQ.
Now, slope of the line l
              m = tan ?
= tan ( 180° – ?MPQ) = – tan  ?MPQ
=
2 1
1 2
MQ
MP
y y
x x
-
- = -
-
 = 
2 1
2 1
y y
.
x x
-
-
Consequently, we see that in both the cases the slope m of the line through the points
(x
1
, y
1
) and (x
2
, y
2
) is given by  
2 1
2 1
y y
m
x x
- =
- .
9.2.2 Conditions for parallelism and perpendicularity of lines in terms of their
slopes In a coordinate plane, suppose that non-vertical lines l
1 
and l
2
 have slopes m
1
and m
2
, respectively. Let their inclinations be a and
ß, respectively.
If the line l
1
 is parallel to l
2 
(Fig 9.4), then their
inclinations are equal, i.e.,
a = ß, and hence, tan a = tan ß
Therefore m
1
 = m
2
, i.e., their slopes are equal.
Conversely, if the slope of two lines l
1
 and l
2
is same, i.e.,
m
1
 = m
2
.
Then tan a = tan ß.
By the property of tangent function (between 0° and 180°), a = ß.
Therefore, the lines are parallel.
Fig 9. 3 (ii)
Fig 9. 4
2024-25
Page 5


vG G G G G     eometry, as a logical system, is a means and even the most powerful
means to make children feel the strength of the human spirit that is
of their own spirit.  – H. FREUDENTHALv
9.1  Introduction
W e are familiar with two-dimensional coordinate geometry
from earlier classes. Mainly, it is a combination of algebra
and geometry. A systematic study of geometry by the use
of algebra was first carried out by celebrated French
philosopher and mathematician René Descartes, in his book
‘La Géométry, published in 1637. This book introduced the
notion of the equation of a curve and related analytical
methods into the study of geometry. The resulting
combination of analysis and geometry is referred now as
analytical geometry. In the earlier classes, we initiated
the study of coordinate geometry, where we   studied about
coordinate axes, coordinate plane, plotting of points in a
plane, distance between two points, section formulae, etc. All these concepts are the
basics of coordinate geometry.
Let us have a brief recall of coordinate geometry done in earlier classes. To
recapitulate, the location of the points (6, – 4) and
(3, 0) in the XY -plane is shown in Fig 9.1.
We may note that the point (6, – 4) is at 6 units
distance from the y-axis measured along the positive
x-axis and at 4 units distance from the x-axis
measured along the negative y-axis. Similarly, the
point (3, 0) is at 3 units distance from the y-axis
measured along  the positive x-axis and has zero
distance from the x-axis.
We also studied there following important
formulae:
9 Chapter
STRAIGHT LINES
René Descartes
 (1596 -1650)
Fig 9.1
2024-25
152 MATHEMATICS
I. Distance between the points P (x
1,  
y
1
) and Q (x
2
, y
2
) is
( ) ( ) 1
2
2
2 2 1
PQ x – x y – y = +
For example, distance between the points (6, – 4) and (3, 0) is
( ) ( )
2 2
3 6 0 4 9 16 5 - + + = + = units.
II. The coordinates of a point dividing the line segment joining the points (x
1,  
y
1
)
and (x
2
, y
2
) internally, in the ratio m: n are 
?
?
?
?
?
?
?
?
+
+
+
+
n m
y n y m
n m
x
n
x
m
1 2 1 2
, .
For example, the coordinates of the point which divides the line segment joining
A  (1, –3) and B (–3, 9) internally, in the ratio 1: 3 are given by 
1 ( 3) 3 1
0
1 3
. .
x
- +
= =
+
and 
( ) 1.9 + 3. –3
= = 0.
1 + 3
y
III.   In particular, if m = n, the coordinates of the mid-point of the line segment
joining the points (x
1,  
y
1
) and (x
2
, y
2
) are ?
?
?
?
?
? + +
2
,
2
2 1 2 1
y y
x x
.
IV . Area of the triangle whose vertices are (x
1,  
y
1
), (x
2
, y
2
) and (x
3
, y
3
) is
( ) ( ) ( ) 1 2 3
2 3 3 1 1 2
1
2
- + - + - y y y y y y
x x x .
For example, the area of the triangle, whose vertices are (4, 4), (3, – 2) and (– 3, 16) is
54
1
4( 2 16) 3(16 4) ( 3)(4 2) 27.
2 2
-
- - + - + - + = =
Remark If the area of the triangle ABC is zero, then three points A, B and C lie on
a line, i.e., they are collinear.
In the this Chapter, we shall continue the study of coordinate geometry to study
properties of the simplest geometric figure – straight line. Despite its simplicity, the
line is a vital concept of geometry and enters into our daily experiences in numerous
interesting and useful ways. Main focus is on representing the line algebraically, for
which slope is most essential.
9.2  Slope of a Line
A line in a coordinate plane forms two angles with the x-axis, which are supplementary.
2024-25
STRAIGHT LINES       153
The angle (say) ? made by the line l with positive
direction of x-axis and measured anti clockwise
is called the inclination of the line. Obviously
0° = ? = 180° (Fig 9.2).
We observe that lines parallel to x-axis, or
coinciding with x-axis, have inclination of 0°. The
inclination of a vertical line (parallel to or
coinciding with y-axis) is 90°.
Definition 1 If ? is the inclination of a line
l, then tan ? is called the slope or gradient of
the line l.
The slope of a line whose inclination is 90° is not
defined.
The slope of a line is denoted by m.
Thus, m = tan ?, ? ? 90°
It may be observed that the slope of x-axis is zero and slope of y-axis is not defined.
9.2.1 Slope of a line when coordinates of any two points on the line are given
We know that a line is completely determined when we are given two points on it.
Hence, we proceed to find the slope of a
line in terms of the coordinates of two points
on the line.
Let P(x
1
, y
1
) and Q(x
2
, y
2
) be two
points on non-vertical line l whose inclination
is ?. Obviously, x
1
 ? x
2
, otherwise the line
will become perpendicular to x-axis and its
slope will not be defined. The inclination of
the line l may be acute or obtuse. Let us
take these two cases.
Draw perpendicular QR to x-axis and
PM perpendicular to RQ as shown in
Figs. 9.3 (i) and (ii).
Case 1 When angle  ? is acute:
In Fig 9.3 (i), ?MPQ =  ?. ... (1)
Therefore, slope of line l = m = tan ?.
But in ?MPQ, we have 
2 1
2 1
MQ
tan? .
MP
y y
x x
- = =
- ... (2)
Fig 9.2
Fig 9. 3 (i)
2024-25
154 MATHEMATICS
From equations (1) and (2), we have
2 1
2 1
.
y y
m
x x
- =
- Case II  When angle ? is obtuse:
In Fig 9.3 (ii), we have
 ?MPQ = 180° –  ?.
Therefore,  ? = 180° – ?MPQ.
Now, slope of the line l
              m = tan ?
= tan ( 180° – ?MPQ) = – tan  ?MPQ
=
2 1
1 2
MQ
MP
y y
x x
-
- = -
-
 = 
2 1
2 1
y y
.
x x
-
-
Consequently, we see that in both the cases the slope m of the line through the points
(x
1
, y
1
) and (x
2
, y
2
) is given by  
2 1
2 1
y y
m
x x
- =
- .
9.2.2 Conditions for parallelism and perpendicularity of lines in terms of their
slopes In a coordinate plane, suppose that non-vertical lines l
1 
and l
2
 have slopes m
1
and m
2
, respectively. Let their inclinations be a and
ß, respectively.
If the line l
1
 is parallel to l
2 
(Fig 9.4), then their
inclinations are equal, i.e.,
a = ß, and hence, tan a = tan ß
Therefore m
1
 = m
2
, i.e., their slopes are equal.
Conversely, if the slope of two lines l
1
 and l
2
is same, i.e.,
m
1
 = m
2
.
Then tan a = tan ß.
By the property of tangent function (between 0° and 180°), a = ß.
Therefore, the lines are parallel.
Fig 9. 3 (ii)
Fig 9. 4
2024-25
STRAIGHT LINES       155
Hence, two non vertical lines l
1 
and l
2
 are parallel if and only if their slopes
are equal.
If the lines l
1
 and l
2
 are perpendicular (Fig 9.5), then ß = a + 90°.
Therefore, tan ß = tan (a + 90°)
= – cot a = 
1
tana
- i.e., m
2
 = 
1
1
m
- or m
1
  m
2
  = – 1
Conversely, if m
1
  m
2
  =  – 1, i.e., tan a tan ß = – 1.
Then tan a = – cot ß = tan (ß + 90°) or tan (ß – 90°)
Therefore, a  and ß differ by 90°.
Thus, lines l
1
 and l
2
 are perpendicular to each other.
Hence, two non-vertical lines are perpendicular to each other if and only if
their slopes are negative reciprocals of each other,
i.e., m
2
= 
1
1
m
- or,  m
1
 m
2
 = – 1.
Let us consider the following example.
Example 1 Find the slope of the lines:
(a) Passing through the points (3, – 2) and (–1, 4),
(b) Passing through the points (3, – 2) and (7, – 2),
(c) Passing through the points (3, – 2) and (3, 4),
(d) Making inclination of 60° with the positive direction of x-axis.
Solution (a) The slope of the line through (3, – 2) and (– 1, 4) is
                                       
4 ( 2) 6 3
1 3 4 2
m
- -
= = = -
- - -
 .
(b) The slope of the line through the points (3, – 2) and (7, – 2) is
                                          
–2 – (–2) 0
= = = 0
7 – 3 4
m
.
(c) The slope of the line through the points (3, – 2) and (3, 4) is
Fig 9. 5
2024-25
Read More
75 videos|238 docs|91 tests

Top Courses for Commerce

FAQs on NCERT Textbook: Straight Lines - Mathematics (Maths) Class 11 - Commerce

1. What are straight lines in mathematics?
Ans. In mathematics, straight lines are one-dimensional geometric objects that extend indefinitely in both directions. They have a constant slope and do not curve or bend.
2. How do you find the equation of a straight line given two points?
Ans. To find the equation of a straight line given two points, we can use the slope-intercept form of a line, which is y = mx + b. First, calculate the slope (m) using the formula (y2 - y1) / (x2 - x1), where (x1, y1) and (x2, y2) are the coordinates of the two points. Then substitute the slope and one of the point's coordinates into the equation to find the value of b.
3. What is the distance between two parallel straight lines?
Ans. The distance between two parallel straight lines can be found by taking the perpendicular distance from any point on one line to the other line. This distance can be calculated using the formula |ax1 + by1 + c| / √(a^2 + b^2), where ax + by + c = 0 represents the equation of one of the lines and (x1, y1) is the coordinates of any point on the other line.
4. How can you determine if two lines are perpendicular to each other?
Ans. Two lines are perpendicular to each other if the product of their slopes is -1. In other words, if the slopes of two lines, m1 and m2, satisfy the equation m1 * m2 = -1, then the lines are perpendicular.
5. Can two straight lines intersect at more than one point?
Ans. No, two straight lines can only intersect at most one point. If two lines intersect at more than one point, they would be considered the same line, as they would have the same slope and y-intercept.
75 videos|238 docs|91 tests
Download as PDF
Explore Courses for Commerce exam

Top Courses for Commerce

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

MCQs

,

Summary

,

Semester Notes

,

Important questions

,

NCERT Textbook: Straight Lines | Mathematics (Maths) Class 11 - Commerce

,

Free

,

Sample Paper

,

study material

,

mock tests for examination

,

Objective type Questions

,

video lectures

,

shortcuts and tricks

,

Previous Year Questions with Solutions

,

pdf

,

practice quizzes

,

NCERT Textbook: Straight Lines | Mathematics (Maths) Class 11 - Commerce

,

Extra Questions

,

Exam

,

ppt

,

NCERT Textbook: Straight Lines | Mathematics (Maths) Class 11 - Commerce

,

past year papers

,

Viva Questions

;