NCERT Textbook: Integrals

# NCERT Textbook: Integrals | NCERT Textbooks (Class 6 to Class 12) - CTET & State TET PDF Download

``` Page 1

INTEGRALS         225
v Just as a mountaineer climbs a mountain – because it is there, so
a good mathematics student studies new material because
it is there. — JAMES B. BRISTOL v
7.1  Introduction
Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.
If a function f  is differentiable in an interval I, i.e., its
derivative f 'exists at each point of I, then a natural question
arises that given f'at each point of I, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives (or
primitive) of the function. Further, the formula that gives
all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:
(a) the problem of finding a function whenever its derivative is given,
(b) the problem of finding the area bounded by the graph of a function under certain
conditions.
These  two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.
Chapter 7
INTEGRALS
G .W. Leibnitz
(1646 -1716)
Rationalised 2023-24
Page 2

INTEGRALS         225
v Just as a mountaineer climbs a mountain – because it is there, so
a good mathematics student studies new material because
it is there. — JAMES B. BRISTOL v
7.1  Introduction
Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.
If a function f  is differentiable in an interval I, i.e., its
derivative f 'exists at each point of I, then a natural question
arises that given f'at each point of I, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives (or
primitive) of the function. Further, the formula that gives
all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:
(a) the problem of finding a function whenever its derivative is given,
(b) the problem of finding the area bounded by the graph of a function under certain
conditions.
These  two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.
Chapter 7
INTEGRALS
G .W. Leibnitz
(1646 -1716)
Rationalised 2023-24
226 MATHEMATICS
There is a connection, known as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
tool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics, finance and probability.
In this Chapter, we shall confine ourselves to the study of indefinite and definite
integrals and their elementary properties including some techniques of integration.
7.2  Integration as an Inverse Process of Differentiation
Integration is the inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.
Let us consider the following examples:
We know that (sin )
d
x
dx
= cos x ... (1)
3
( )
3
d x
dx
= x
2
... (2)
and ( )
x
d
e
dx
= e
x
... (3)
We observe that in (1), the function cos x is the derived function of sin x. We say
that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and (3),
3
3
x
and
e
x
are the anti derivatives (or integrals) of x
2
and e
x
, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is zero and hence, we
can write (1), (2) and (3) as follows :
(sin + C) cos =
d
x x
dx
,
3
2
( + C)
3
=
d x
x
dx
and ( + C)=
x x
d
e e
dx
Thus, anti derivatives (or integrals) of the above cited functions are not unique.
Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (or integrals) of the given function.
More generally, if there is a function F such that
F ( ) = ( )
d
x f x
dx
,
?
x ? I (interval),
then for any arbitrary real number C, (also called constant of integration)
[ ] F ( ) + C
d
x
dx
= f (x), x ? I
Rationalised 2023-24
Page 3

INTEGRALS         225
v Just as a mountaineer climbs a mountain – because it is there, so
a good mathematics student studies new material because
it is there. — JAMES B. BRISTOL v
7.1  Introduction
Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.
If a function f  is differentiable in an interval I, i.e., its
derivative f 'exists at each point of I, then a natural question
arises that given f'at each point of I, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives (or
primitive) of the function. Further, the formula that gives
all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:
(a) the problem of finding a function whenever its derivative is given,
(b) the problem of finding the area bounded by the graph of a function under certain
conditions.
These  two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.
Chapter 7
INTEGRALS
G .W. Leibnitz
(1646 -1716)
Rationalised 2023-24
226 MATHEMATICS
There is a connection, known as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
tool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics, finance and probability.
In this Chapter, we shall confine ourselves to the study of indefinite and definite
integrals and their elementary properties including some techniques of integration.
7.2  Integration as an Inverse Process of Differentiation
Integration is the inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.
Let us consider the following examples:
We know that (sin )
d
x
dx
= cos x ... (1)
3
( )
3
d x
dx
= x
2
... (2)
and ( )
x
d
e
dx
= e
x
... (3)
We observe that in (1), the function cos x is the derived function of sin x. We say
that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and (3),
3
3
x
and
e
x
are the anti derivatives (or integrals) of x
2
and e
x
, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is zero and hence, we
can write (1), (2) and (3) as follows :
(sin + C) cos =
d
x x
dx
,
3
2
( + C)
3
=
d x
x
dx
and ( + C)=
x x
d
e e
dx
Thus, anti derivatives (or integrals) of the above cited functions are not unique.
Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (or integrals) of the given function.
More generally, if there is a function F such that
F ( ) = ( )
d
x f x
dx
,
?
x ? I (interval),
then for any arbitrary real number C, (also called constant of integration)
[ ] F ( ) + C
d
x
dx
= f (x), x ? I
Rationalised 2023-24
INTEGRALS         227
Thus, {F + C, C ? R} denotes a family of anti derivatives of f.
Remark  Functions with same derivatives differ by a constant. To show this, let g and h
be two functions having the same derivatives on an interval I.
Consider the function f = g – h defined by f (x) = g(x) – h(x),
?
x ? I
Then
df
dx
= f' = g'  – h' giving  f' (x) = g' (x) – h' (x)
?
x ? I
or f' (x) = 0,
?
x ? I by hypothesis,
i.e., the rate of change of f with respect to x is zero on I and hence f is constant.
In view of the above remark, it is justified to infer that the family {F + C, C ? R}
provides all possible anti derivatives of f.
We introduce a new symbol, namely, ( ) f x dx
?
which will represent the entire
class of anti derivatives read as the indefinite integral of f with respect to x.
Symbolically, we write ( ) = F ( ) + C f x dx x
?
.
Notation Given that
( )
dy
f x
dx
=
, we write y = ( ) f x dx
?
.
For the sake of convenience, we mention below the following symbols/terms/phrases
with their meanings as given in the Table (7.1).
T able 7.1
Symbols/Terms/Phrases Meaning
( ) f x dx
?
Integral of f with respect to x
f (x) in ( ) f x dx
?
Integrand
x in  ( ) f x dx
?
V ariable of integration
Integrate Find the  integral
An integral of f A function F such that
F'(x) = f (x)
Integration The process of finding the integral
Constant of Integration Any real number C, considered as
constant function
Rationalised 2023-24
Page 4

INTEGRALS         225
v Just as a mountaineer climbs a mountain – because it is there, so
a good mathematics student studies new material because
it is there. — JAMES B. BRISTOL v
7.1  Introduction
Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.
If a function f  is differentiable in an interval I, i.e., its
derivative f 'exists at each point of I, then a natural question
arises that given f'at each point of I, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives (or
primitive) of the function. Further, the formula that gives
all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:
(a) the problem of finding a function whenever its derivative is given,
(b) the problem of finding the area bounded by the graph of a function under certain
conditions.
These  two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.
Chapter 7
INTEGRALS
G .W. Leibnitz
(1646 -1716)
Rationalised 2023-24
226 MATHEMATICS
There is a connection, known as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
tool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics, finance and probability.
In this Chapter, we shall confine ourselves to the study of indefinite and definite
integrals and their elementary properties including some techniques of integration.
7.2  Integration as an Inverse Process of Differentiation
Integration is the inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.
Let us consider the following examples:
We know that (sin )
d
x
dx
= cos x ... (1)
3
( )
3
d x
dx
= x
2
... (2)
and ( )
x
d
e
dx
= e
x
... (3)
We observe that in (1), the function cos x is the derived function of sin x. We say
that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and (3),
3
3
x
and
e
x
are the anti derivatives (or integrals) of x
2
and e
x
, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is zero and hence, we
can write (1), (2) and (3) as follows :
(sin + C) cos =
d
x x
dx
,
3
2
( + C)
3
=
d x
x
dx
and ( + C)=
x x
d
e e
dx
Thus, anti derivatives (or integrals) of the above cited functions are not unique.
Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (or integrals) of the given function.
More generally, if there is a function F such that
F ( ) = ( )
d
x f x
dx
,
?
x ? I (interval),
then for any arbitrary real number C, (also called constant of integration)
[ ] F ( ) + C
d
x
dx
= f (x), x ? I
Rationalised 2023-24
INTEGRALS         227
Thus, {F + C, C ? R} denotes a family of anti derivatives of f.
Remark  Functions with same derivatives differ by a constant. To show this, let g and h
be two functions having the same derivatives on an interval I.
Consider the function f = g – h defined by f (x) = g(x) – h(x),
?
x ? I
Then
df
dx
= f' = g'  – h' giving  f' (x) = g' (x) – h' (x)
?
x ? I
or f' (x) = 0,
?
x ? I by hypothesis,
i.e., the rate of change of f with respect to x is zero on I and hence f is constant.
In view of the above remark, it is justified to infer that the family {F + C, C ? R}
provides all possible anti derivatives of f.
We introduce a new symbol, namely, ( ) f x dx
?
which will represent the entire
class of anti derivatives read as the indefinite integral of f with respect to x.
Symbolically, we write ( ) = F ( ) + C f x dx x
?
.
Notation Given that
( )
dy
f x
dx
=
, we write y = ( ) f x dx
?
.
For the sake of convenience, we mention below the following symbols/terms/phrases
with their meanings as given in the Table (7.1).
T able 7.1
Symbols/Terms/Phrases Meaning
( ) f x dx
?
Integral of f with respect to x
f (x) in ( ) f x dx
?
Integrand
x in  ( ) f x dx
?
V ariable of integration
Integrate Find the  integral
An integral of f A function F such that
F'(x) = f (x)
Integration The process of finding the integral
Constant of Integration Any real number C, considered as
constant function
Rationalised 2023-24
228 MATHEMATICS
We already know the formulae for the derivatives of many important functions.
From these formulae, we can write down immediately the corresponding formulae
(referred to as standard formulae) for the integrals of these functions, as listed below
which will be used to find integrals of other functions.
Derivatives Integrals (Anti derivatives)
(i)
1
1
n
n
d x
x
dx n
+
? ?
=
? ?
+
? ?
;
1
C
1
n
n
x
x dx
n
+
= +
+
?
, n ? –1
Particularly, we note that
( ) 1
d
x
dx
=
;      C dx x = +
?
(ii) ( ) sin cos
d
x x
dx
=
; cos sin C x dx x = +
?
(iii) ( ) – cos sin
d
x x
dx
=
; sin cos C x dx – x = +
?
(iv) ( )
2
tan sec
d
x x
dx
=
;
2
sec tan C x dx x = +
?
(v) ( )
2
– cot cosec
d
x x
dx
=
;
2
cosec cot C x dx – x = +
?
(vi) ( ) sec sec tan
d
x x x
dx
=
; sec tan sec C x x dx x = +
?
(vii) ( ) – cosec cosec cot
d
x x x
dx
=
; cosec cot – cosec C x x dx x = +
?
(viii)
( )
– 1
2
1
sin
1
d
x
dx
– x
=
;
– 1
2
sin C
1
dx
x
– x
= +
?
(ix)
( )
– 1
2
1
– cos
1
d
x
dx
– x
=
;
– 1
2
cos C
1
dx
– x
– x
= +
?
(x)
( )
– 1
2
1
tan
1
d
x
dx x
=
+
;
– 1
2
tan C
1
dx
x
x
= +
+
?
(xi)
( )
x x
d
e e
dx
=
; C
x x
e dx e = +
?
Rationalised 2023-24
Page 5

INTEGRALS         225
v Just as a mountaineer climbs a mountain – because it is there, so
a good mathematics student studies new material because
it is there. — JAMES B. BRISTOL v
7.1  Introduction
Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.
If a function f  is differentiable in an interval I, i.e., its
derivative f 'exists at each point of I, then a natural question
arises that given f'at each point of I, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives (or
primitive) of the function. Further, the formula that gives
all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:
(a) the problem of finding a function whenever its derivative is given,
(b) the problem of finding the area bounded by the graph of a function under certain
conditions.
These  two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.
Chapter 7
INTEGRALS
G .W. Leibnitz
(1646 -1716)
Rationalised 2023-24
226 MATHEMATICS
There is a connection, known as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
tool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics, finance and probability.
In this Chapter, we shall confine ourselves to the study of indefinite and definite
integrals and their elementary properties including some techniques of integration.
7.2  Integration as an Inverse Process of Differentiation
Integration is the inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.
Let us consider the following examples:
We know that (sin )
d
x
dx
= cos x ... (1)
3
( )
3
d x
dx
= x
2
... (2)
and ( )
x
d
e
dx
= e
x
... (3)
We observe that in (1), the function cos x is the derived function of sin x. We say
that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and (3),
3
3
x
and
e
x
are the anti derivatives (or integrals) of x
2
and e
x
, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is zero and hence, we
can write (1), (2) and (3) as follows :
(sin + C) cos =
d
x x
dx
,
3
2
( + C)
3
=
d x
x
dx
and ( + C)=
x x
d
e e
dx
Thus, anti derivatives (or integrals) of the above cited functions are not unique.
Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (or integrals) of the given function.
More generally, if there is a function F such that
F ( ) = ( )
d
x f x
dx
,
?
x ? I (interval),
then for any arbitrary real number C, (also called constant of integration)
[ ] F ( ) + C
d
x
dx
= f (x), x ? I
Rationalised 2023-24
INTEGRALS         227
Thus, {F + C, C ? R} denotes a family of anti derivatives of f.
Remark  Functions with same derivatives differ by a constant. To show this, let g and h
be two functions having the same derivatives on an interval I.
Consider the function f = g – h defined by f (x) = g(x) – h(x),
?
x ? I
Then
df
dx
= f' = g'  – h' giving  f' (x) = g' (x) – h' (x)
?
x ? I
or f' (x) = 0,
?
x ? I by hypothesis,
i.e., the rate of change of f with respect to x is zero on I and hence f is constant.
In view of the above remark, it is justified to infer that the family {F + C, C ? R}
provides all possible anti derivatives of f.
We introduce a new symbol, namely, ( ) f x dx
?
which will represent the entire
class of anti derivatives read as the indefinite integral of f with respect to x.
Symbolically, we write ( ) = F ( ) + C f x dx x
?
.
Notation Given that
( )
dy
f x
dx
=
, we write y = ( ) f x dx
?
.
For the sake of convenience, we mention below the following symbols/terms/phrases
with their meanings as given in the Table (7.1).
T able 7.1
Symbols/Terms/Phrases Meaning
( ) f x dx
?
Integral of f with respect to x
f (x) in ( ) f x dx
?
Integrand
x in  ( ) f x dx
?
V ariable of integration
Integrate Find the  integral
An integral of f A function F such that
F'(x) = f (x)
Integration The process of finding the integral
Constant of Integration Any real number C, considered as
constant function
Rationalised 2023-24
228 MATHEMATICS
We already know the formulae for the derivatives of many important functions.
From these formulae, we can write down immediately the corresponding formulae
(referred to as standard formulae) for the integrals of these functions, as listed below
which will be used to find integrals of other functions.
Derivatives Integrals (Anti derivatives)
(i)
1
1
n
n
d x
x
dx n
+
? ?
=
? ?
+
? ?
;
1
C
1
n
n
x
x dx
n
+
= +
+
?
, n ? –1
Particularly, we note that
( ) 1
d
x
dx
=
;      C dx x = +
?
(ii) ( ) sin cos
d
x x
dx
=
; cos sin C x dx x = +
?
(iii) ( ) – cos sin
d
x x
dx
=
; sin cos C x dx – x = +
?
(iv) ( )
2
tan sec
d
x x
dx
=
;
2
sec tan C x dx x = +
?
(v) ( )
2
– cot cosec
d
x x
dx
=
;
2
cosec cot C x dx – x = +
?
(vi) ( ) sec sec tan
d
x x x
dx
=
; sec tan sec C x x dx x = +
?
(vii) ( ) – cosec cosec cot
d
x x x
dx
=
; cosec cot – cosec C x x dx x = +
?
(viii)
( )
– 1
2
1
sin
1
d
x
dx
– x
=
;
– 1
2
sin C
1
dx
x
– x
= +
?
(ix)
( )
– 1
2
1
– cos
1
d
x
dx
– x
=
;
– 1
2
cos C
1
dx
– x
– x
= +
?
(x)
( )
– 1
2
1
tan
1
d
x
dx x
=
+
;
– 1
2
tan C
1
dx
x
x
= +
+
?
(xi)
( )
x x
d
e e
dx
=
; C
x x
e dx e = +
?
Rationalised 2023-24
INTEGRALS         229
(xii)
( )
1
log | |
d
x
dx x
=
;
1
log | | C dx x
x
= +
?
(xiii)
x
x
d a
a
dx log a
? ?
=
? ?
? ?
;
C
x
x
a
a dx
log a
= +
?
A
Note  In practice, we normally do not mention the interval over which the various
functions are defined. However, in any specific problem one has to keep it in mind.
7.2.1 Some properties of indefinite integral
In this sub section, we shall derive some properties of indefinite integrals.
(I) The process of differentiation and integration are inverses of each other in the
sense of the following results :
( )
d
f x dx
dx
?
=f (x)
and ( ) f x dx '
?
=f (x) + C, where C is any arbitrary constant.
Proof Let F be any anti derivative of f, i.e.,
F( )
d
x
dx
=f (x)
Then ( ) f x dx
?
= F(x) + C
Therefore ( )
d
f x dx
dx
?
= ( ) F ( ) + C
d
x
dx
=
F ( ) = ( )
d
x f x
dx
Similarly, we note that
f '(x) =
( )
d
f x
dx
and hence ( ) f x dx '
?
=f (x) + C
where C is arbitrary constant called constant of integration.
(II) Two indefinite integrals with the same derivative lead to the same family of
curves and so they are equivalent.
Rationalised 2023-24
```

## NCERT Textbooks (Class 6 to Class 12)

678 docs|672 tests

## FAQs on NCERT Textbook: Integrals - NCERT Textbooks (Class 6 to Class 12) - CTET & State TET

 1. What is the definition of an integral in calculus?
Ans. An integral is a mathematical concept that represents the area under a curve or the accumulation of a quantity over an interval. It is used to find the exact value of a function or a quantity that cannot be easily calculated using other mathematical methods.
 2. What is the difference between a definite and indefinite integral?
Ans. A definite integral has fixed limits of integration and represents a specific value of the area under a curve or the accumulation of a quantity over a given interval. On the other hand, an indefinite integral does not have any limits of integration and represents a family of functions that differ only by a constant. It is used to find the antiderivative of a function.
 3. What are some common techniques used to evaluate integrals?
Ans. Some common techniques used to evaluate integrals include substitution, integration by parts, partial fractions, trigonometric substitution, and using special functions such as logarithms and exponential functions. The choice of technique depends on the form of the integral and the function being integrated.
 4. How do integrals relate to real-world applications?
Ans. Integrals have various real-world applications, such as calculating the area under a curve to find the total distance traveled by an object, finding the volume of a solid object, calculating the work done by a force, and determining the average value of a function over a given interval. They are also used in fields such as physics, engineering, and economics to model and analyze real-world systems.
 5. What is the fundamental theorem of calculus?
Ans. The fundamental theorem of calculus states that differentiation and integration are inverse operations. In other words, if a function F(x) is the antiderivative of another function f(x), then the definite integral of f(x) over a given interval [a,b] is equal to the difference between the values of F(x) evaluated at the endpoints of the interval. This theorem provides a powerful tool for evaluating integrals and is essential in many applications of calculus.

## NCERT Textbooks (Class 6 to Class 12)

678 docs|672 tests

### Up next

 Explore Courses for CTET & State TET exam
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

;