Page 1
Series : OSR/I -f--i
;ff*"
651112
fiR.
rmclEt[iTflaril
r
Candidates must write the Code on
the title page of the answer-book.
st6
o
!ffircfr-qo-ri{fu WyFr-Eri[EBRysS t r
o
trFr-rrr {
qri6}
Erq *t er}r
fqqlq*ts;rqt *} 6H sr{-gfitr*,r *.w-g*wfed r
o
!ffir
dq m'ri{ toss
ylrT-Er il
zg }rrt
t r
o grFfl[FrmvrrfrqarvJ6.Fr++rr6d, gyq6TF:qi6.
wq*rftrd r
.
Es
qF[-wt
si Td+ + fuq 15 frqe
Eil
{Frq felqr
.rqr
t r
yw-q*
*i f+otq
WEq
,t
tO.rS
qi
fuqr
qrtn
I 10.15
qq
t 10.30
qQ
iro on iqa IF{-rEr
qtn
sir gs srqRr
+
qt{q
i rrt_
gflersTw*ttr+tqa1ffiri
r
o
Please check that this question paper contains 8 printed pages.
o
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the candidate.
r
Please check that this question paper contains 29 questions.
e
Please write dorvn the Serial Number of the question before attempting it.
o
15 minutes time has been allotted to read this question paper. The question paper will be
distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the
question paper only and will not write any answer on the answer-book during this period.
MATHEMATICS
tirilri.
Roll No.
fulfuHrtzt: 3
qr*l
Time allowed: 3 hours
l
Setfama+
ef6:
too
I
Maximum Marlts : 100
HFTTATFiltST:
(, nfrwerW* r
(ii)
W,rrr-wif zg vwtqi#7ezsldfur&a*: atddutTFr tqvgsrif tO
ywfeqC;
drdqr
vaiiaw d' r srsac 12 sqrsF'{+ drdfr
qtroirwi
r srs vlz
yw
tffisyaqoai6wi r
(iii) sus erf Hd'q'F# #arr
frffi
qr qrqq
wnr wr
qT
ena?qqdTqwr&r'
Er fiqrd
fr
(iv)
Yf
vw-wtfu
?Ef'# rfurftEreiot' ard eswltdzrT* siqf
qrd
z
qwl+
etmrTrfu*
r
dd
s*srifcc,lrqni
wd?futTqn1*
t
(v) eryrizr #vqhr
q?
avqfu
aaf t r ailqpqqir
qrl
w eilq dyqdtq sr{sft
qfur
rsr# f, r
tP.T.O.
Page 2
Series : OSR/I -f--i
;ff*"
651112
fiR.
rmclEt[iTflaril
r
Candidates must write the Code on
the title page of the answer-book.
st6
o
!ffircfr-qo-ri{fu WyFr-Eri[EBRysS t r
o
trFr-rrr {
qri6}
Erq *t er}r
fqqlq*ts;rqt *} 6H sr{-gfitr*,r *.w-g*wfed r
o
!ffir
dq m'ri{ toss
ylrT-Er il
zg }rrt
t r
o grFfl[FrmvrrfrqarvJ6.Fr++rr6d, gyq6TF:qi6.
wq*rftrd r
.
Es
qF[-wt
si Td+ + fuq 15 frqe
Eil
{Frq felqr
.rqr
t r
yw-q*
*i f+otq
WEq
,t
tO.rS
qi
fuqr
qrtn
I 10.15
qq
t 10.30
qQ
iro on iqa IF{-rEr
qtn
sir gs srqRr
+
qt{q
i rrt_
gflersTw*ttr+tqa1ffiri
r
o
Please check that this question paper contains 8 printed pages.
o
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the candidate.
r
Please check that this question paper contains 29 questions.
e
Please write dorvn the Serial Number of the question before attempting it.
o
15 minutes time has been allotted to read this question paper. The question paper will be
distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the
question paper only and will not write any answer on the answer-book during this period.
MATHEMATICS
tirilri.
Roll No.
fulfuHrtzt: 3
qr*l
Time allowed: 3 hours
l
Setfama+
ef6:
too
I
Maximum Marlts : 100
HFTTATFiltST:
(, nfrwerW* r
(ii)
W,rrr-wif zg vwtqi#7ezsldfur&a*: atddutTFr tqvgsrif tO
ywfeqC;
drdqr
vaiiaw d' r srsac 12 sqrsF'{+ drdfr
qtroirwi
r srs vlz
yw
tffisyaqoai6wi r
(iii) sus erf Hd'q'F# #arr
frffi
qr qrqq
wnr wr
qT
ena?qqdTqwr&r'
Er fiqrd
fr
(iv)
Yf
vw-wtfu
?Ef'# rfurftEreiot' ard eswltdzrT* siqf
qrd
z
qwl+
etmrTrfu*
r
dd
s*srifcc,lrqni
wd?futTqn1*
t
(v) eryrizr #vqhr
q?
avqfu
aaf t r ailqpqqir
qrl
w eilq dyqdtq sr{sft
qfur
rsr# f, r
tP.T.O.
General Instructions :
(i) All questions are comPulsory
(ii) The question paper consists of 29 questions divided into three sections A, B and C'
Section
-
A iomprises of 10 questions of one mark each, Section
-
B comprises of
72 questions of
four
mirks iach and Section
-
C comprises of 7 questions of six
marks each.
(iii) All questions in section
-
A are to be answered in one word, one sentence or as per
the exact requirement of the question'
(iv) There is no overall choice. However, intemal choice has been provided in 4
questions of
four
marles each and 2 questions of six marla each. You have to atternpt
only one of the alternatives in all such questions'
(v)
(Jse
of calculators is not permitted. You may askfor logarithmic tables, if required'
EIrg- 3[
SECTION. A
Irfi {qr 1 t 10 Hqtr+fi'YFT 1
eim
qr
t r
Question
numbers I to 10 carry l mark each'
t. {rRn i + 3i +ztmefu1 2i-ri * otwqq}qaro+tkq
t
Find the projection of the vector t + :i + 7t on the vector Zi
-
li + Ot.
Z. e-q TrkttT sr
qtq$ q+e'rur
frTil +itqq + fiE (a, b, c) t tt*t
qdr
t Eelr
qIm?T
?.(l+i+fl1=2$qqi6E$
1
Write the vector equation of the plane, passing through t[re point (a, b, c) and parallel
to the plane ?'
(l +i + [1
=
z.
3.
(r.n
.
#
* vfr-effisffE frftqq r
write the antiderivatir. or
(l.E.
fJ
4 frr[:
i].[l 1]=[ ; !].d(,-y)Hrq''ffe*lrsrq
,',[:i].[
l1]=[ ; l],o'u(x-v)
65t112
Page 3
Series : OSR/I -f--i
;ff*"
651112
fiR.
rmclEt[iTflaril
r
Candidates must write the Code on
the title page of the answer-book.
st6
o
!ffircfr-qo-ri{fu WyFr-Eri[EBRysS t r
o
trFr-rrr {
qri6}
Erq *t er}r
fqqlq*ts;rqt *} 6H sr{-gfitr*,r *.w-g*wfed r
o
!ffir
dq m'ri{ toss
ylrT-Er il
zg }rrt
t r
o grFfl[FrmvrrfrqarvJ6.Fr++rr6d, gyq6TF:qi6.
wq*rftrd r
.
Es
qF[-wt
si Td+ + fuq 15 frqe
Eil
{Frq felqr
.rqr
t r
yw-q*
*i f+otq
WEq
,t
tO.rS
qi
fuqr
qrtn
I 10.15
qq
t 10.30
qQ
iro on iqa IF{-rEr
qtn
sir gs srqRr
+
qt{q
i rrt_
gflersTw*ttr+tqa1ffiri
r
o
Please check that this question paper contains 8 printed pages.
o
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the candidate.
r
Please check that this question paper contains 29 questions.
e
Please write dorvn the Serial Number of the question before attempting it.
o
15 minutes time has been allotted to read this question paper. The question paper will be
distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the
question paper only and will not write any answer on the answer-book during this period.
MATHEMATICS
tirilri.
Roll No.
fulfuHrtzt: 3
qr*l
Time allowed: 3 hours
l
Setfama+
ef6:
too
I
Maximum Marlts : 100
HFTTATFiltST:
(, nfrwerW* r
(ii)
W,rrr-wif zg vwtqi#7ezsldfur&a*: atddutTFr tqvgsrif tO
ywfeqC;
drdqr
vaiiaw d' r srsac 12 sqrsF'{+ drdfr
qtroirwi
r srs vlz
yw
tffisyaqoai6wi r
(iii) sus erf Hd'q'F# #arr
frffi
qr qrqq
wnr wr
qT
ena?qqdTqwr&r'
Er fiqrd
fr
(iv)
Yf
vw-wtfu
?Ef'# rfurftEreiot' ard eswltdzrT* siqf
qrd
z
qwl+
etmrTrfu*
r
dd
s*srifcc,lrqni
wd?futTqn1*
t
(v) eryrizr #vqhr
q?
avqfu
aaf t r ailqpqqir
qrl
w eilq dyqdtq sr{sft
qfur
rsr# f, r
tP.T.O.
General Instructions :
(i) All questions are comPulsory
(ii) The question paper consists of 29 questions divided into three sections A, B and C'
Section
-
A iomprises of 10 questions of one mark each, Section
-
B comprises of
72 questions of
four
mirks iach and Section
-
C comprises of 7 questions of six
marks each.
(iii) All questions in section
-
A are to be answered in one word, one sentence or as per
the exact requirement of the question'
(iv) There is no overall choice. However, intemal choice has been provided in 4
questions of
four
marles each and 2 questions of six marla each. You have to atternpt
only one of the alternatives in all such questions'
(v)
(Jse
of calculators is not permitted. You may askfor logarithmic tables, if required'
EIrg- 3[
SECTION. A
Irfi {qr 1 t 10 Hqtr+fi'YFT 1
eim
qr
t r
Question
numbers I to 10 carry l mark each'
t. {rRn i + 3i +ztmefu1 2i-ri * otwqq}qaro+tkq
t
Find the projection of the vector t + :i + 7t on the vector Zi
-
li + Ot.
Z. e-q TrkttT sr
qtq$ q+e'rur
frTil +itqq + fiE (a, b, c) t tt*t
qdr
t Eelr
qIm?T
?.(l+i+fl1=2$qqi6E$
1
Write the vector equation of the plane, passing through t[re point (a, b, c) and parallel
to the plane ?'
(l +i + [1
=
z.
3.
(r.n
.
#
* vfr-effisffE frftqq r
write the antiderivatir. or
(l.E.
fJ
4 frr[:
i].[l 1]=[ ; !].d(,-y)Hrq''ffe*lrsrq
,',[:i].[
l1]=[ ; l],o'u(x-v)
65t112
s. frq enryq*+tur
+t x*.ft(ra
dftrq ,,
tu \l
\
I
]=
,
Solve rhe following
mafrix equation forx:,
k Ul
\
I
]=
"
6
*l?
;l=
,l?
;l=l
6
-z
l.
7 , ltHl
.rrnrrmfufuq
r
6-2
73
,
write the value of x.
7. ek sin
(r*-,
f
* .or-, ,)
=
, t, nt, sT sFr um *tflqq r
rf sin
(sin-,
|
* .or-, ,)
=
,, then find the value of x.
8. ett {f+fieT*k'srf*,.if
*wg@
t,
,rnr * gokemrft
{Bmr
t,
qt
H-t a, b e R
_
{0}
Sfaeu*
U=*rnrqffit
rqkz x
(x*
5)
=
t0t ai*6rqparo+1fuq
r
Let
*
be a binary operation,
on the set of all non-zero real numbers, given
by a
x
b
=
+
for all a, b € R
- {0}.Find the value of x, given that2x (x x
5)
=
10.
g. qH
Erfr +1iqq ,
J.or-,
(sin
x) d.r.
f
Evaluate
:
J
cos-l (sin
x) d.r.
10.
qkntn
?
q\r
u'eqqffi{+tfq.l?l=
3,
lb,l=3*
? r. u,\rs.q:rs.nPflrt,
H}
? sil{
E' ++q or *iur fufuq r
If vectors
? and E' *r such rhat,
I
?
I =
3,
I
b'
|
=l
*a? x u, is a unit vector, then
write the angle between
? anA U'.
651112
'
,*'T'o'
Page 4
Series : OSR/I -f--i
;ff*"
651112
fiR.
rmclEt[iTflaril
r
Candidates must write the Code on
the title page of the answer-book.
st6
o
!ffircfr-qo-ri{fu WyFr-Eri[EBRysS t r
o
trFr-rrr {
qri6}
Erq *t er}r
fqqlq*ts;rqt *} 6H sr{-gfitr*,r *.w-g*wfed r
o
!ffir
dq m'ri{ toss
ylrT-Er il
zg }rrt
t r
o grFfl[FrmvrrfrqarvJ6.Fr++rr6d, gyq6TF:qi6.
wq*rftrd r
.
Es
qF[-wt
si Td+ + fuq 15 frqe
Eil
{Frq felqr
.rqr
t r
yw-q*
*i f+otq
WEq
,t
tO.rS
qi
fuqr
qrtn
I 10.15
qq
t 10.30
qQ
iro on iqa IF{-rEr
qtn
sir gs srqRr
+
qt{q
i rrt_
gflersTw*ttr+tqa1ffiri
r
o
Please check that this question paper contains 8 printed pages.
o
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the candidate.
r
Please check that this question paper contains 29 questions.
e
Please write dorvn the Serial Number of the question before attempting it.
o
15 minutes time has been allotted to read this question paper. The question paper will be
distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the
question paper only and will not write any answer on the answer-book during this period.
MATHEMATICS
tirilri.
Roll No.
fulfuHrtzt: 3
qr*l
Time allowed: 3 hours
l
Setfama+
ef6:
too
I
Maximum Marlts : 100
HFTTATFiltST:
(, nfrwerW* r
(ii)
W,rrr-wif zg vwtqi#7ezsldfur&a*: atddutTFr tqvgsrif tO
ywfeqC;
drdqr
vaiiaw d' r srsac 12 sqrsF'{+ drdfr
qtroirwi
r srs vlz
yw
tffisyaqoai6wi r
(iii) sus erf Hd'q'F# #arr
frffi
qr qrqq
wnr wr
qT
ena?qqdTqwr&r'
Er fiqrd
fr
(iv)
Yf
vw-wtfu
?Ef'# rfurftEreiot' ard eswltdzrT* siqf
qrd
z
qwl+
etmrTrfu*
r
dd
s*srifcc,lrqni
wd?futTqn1*
t
(v) eryrizr #vqhr
q?
avqfu
aaf t r ailqpqqir
qrl
w eilq dyqdtq sr{sft
qfur
rsr# f, r
tP.T.O.
General Instructions :
(i) All questions are comPulsory
(ii) The question paper consists of 29 questions divided into three sections A, B and C'
Section
-
A iomprises of 10 questions of one mark each, Section
-
B comprises of
72 questions of
four
mirks iach and Section
-
C comprises of 7 questions of six
marks each.
(iii) All questions in section
-
A are to be answered in one word, one sentence or as per
the exact requirement of the question'
(iv) There is no overall choice. However, intemal choice has been provided in 4
questions of
four
marles each and 2 questions of six marla each. You have to atternpt
only one of the alternatives in all such questions'
(v)
(Jse
of calculators is not permitted. You may askfor logarithmic tables, if required'
EIrg- 3[
SECTION. A
Irfi {qr 1 t 10 Hqtr+fi'YFT 1
eim
qr
t r
Question
numbers I to 10 carry l mark each'
t. {rRn i + 3i +ztmefu1 2i-ri * otwqq}qaro+tkq
t
Find the projection of the vector t + :i + 7t on the vector Zi
-
li + Ot.
Z. e-q TrkttT sr
qtq$ q+e'rur
frTil +itqq + fiE (a, b, c) t tt*t
qdr
t Eelr
qIm?T
?.(l+i+fl1=2$qqi6E$
1
Write the vector equation of the plane, passing through t[re point (a, b, c) and parallel
to the plane ?'
(l +i + [1
=
z.
3.
(r.n
.
#
* vfr-effisffE frftqq r
write the antiderivatir. or
(l.E.
fJ
4 frr[:
i].[l 1]=[ ; !].d(,-y)Hrq''ffe*lrsrq
,',[:i].[
l1]=[ ; l],o'u(x-v)
65t112
s. frq enryq*+tur
+t x*.ft(ra
dftrq ,,
tu \l
\
I
]=
,
Solve rhe following
mafrix equation forx:,
k Ul
\
I
]=
"
6
*l?
;l=
,l?
;l=l
6
-z
l.
7 , ltHl
.rrnrrmfufuq
r
6-2
73
,
write the value of x.
7. ek sin
(r*-,
f
* .or-, ,)
=
, t, nt, sT sFr um *tflqq r
rf sin
(sin-,
|
* .or-, ,)
=
,, then find the value of x.
8. ett {f+fieT*k'srf*,.if
*wg@
t,
,rnr * gokemrft
{Bmr
t,
qt
H-t a, b e R
_
{0}
Sfaeu*
U=*rnrqffit
rqkz x
(x*
5)
=
t0t ai*6rqparo+1fuq
r
Let
*
be a binary operation,
on the set of all non-zero real numbers, given
by a
x
b
=
+
for all a, b € R
- {0}.Find the value of x, given that2x (x x
5)
=
10.
g. qH
Erfr +1iqq ,
J.or-,
(sin
x) d.r.
f
Evaluate
:
J
cos-l (sin
x) d.r.
10.
qkntn
?
q\r
u'eqqffi{+tfq.l?l=
3,
lb,l=3*
? r. u,\rs.q:rs.nPflrt,
H}
? sil{
E' ++q or *iur fufuq r
If vectors
? and E' *r such rhat,
I
?
I =
3,
I
b'
|
=l
*a? x u, is a unit vector, then
write the angle between
? anA U'.
651112
'
,*'T'o'
Etug-Et
SECTION -
B
,rfi {reqr 11 t 22 rou*osq{
C
ei6.qr t r
Question
numbers
lLto22
cwry 4 marks each'
11.
qa
oirqrm flfi
qi&q
Ht
qot
f(x)
=
3#
-
+f
-
tz* + s
(a) fq{etq$iqlat
I
(b) ftirr 6rgqm
| 1
sIqET
elF,,
=
a sin30
dsrT y
=
a cos30
+M' e
=
fr
wwi
tot aqT
e${Tiq *qrfu'qur frrd
dfqq r
Find the intervals
in which the function
f(x)
=
3f
-
+x3
-
12* + 5 is
(a) strictlYincreasing
(b) strict$ decreasing
OR
Find the equations
of the tangent and normal to the curve x
=
a sin30 and
y
=
a cos30 at
lt
0
=7.
+
\
I
t2.
q,-nrnqm{q
J##"
eNrat
qmnrdqitq
,!a-:1Pffia'
f sin6x + cos6x
'
Evatuate:
J
ffiorr,
o,
OR
'
,
-ghp+
3.r
-
18 dr
Evaluate:
J
(r
t3. tTq
effitr€
q++tq
*} re
qfrkg
:
G-D**"=h'
Solve the following
differential
equation
:
(i-r)ff.rn=h'
65lLl2
Page 5
Series : OSR/I -f--i
;ff*"
651112
fiR.
rmclEt[iTflaril
r
Candidates must write the Code on
the title page of the answer-book.
st6
o
!ffircfr-qo-ri{fu WyFr-Eri[EBRysS t r
o
trFr-rrr {
qri6}
Erq *t er}r
fqqlq*ts;rqt *} 6H sr{-gfitr*,r *.w-g*wfed r
o
!ffir
dq m'ri{ toss
ylrT-Er il
zg }rrt
t r
o grFfl[FrmvrrfrqarvJ6.Fr++rr6d, gyq6TF:qi6.
wq*rftrd r
.
Es
qF[-wt
si Td+ + fuq 15 frqe
Eil
{Frq felqr
.rqr
t r
yw-q*
*i f+otq
WEq
,t
tO.rS
qi
fuqr
qrtn
I 10.15
qq
t 10.30
qQ
iro on iqa IF{-rEr
qtn
sir gs srqRr
+
qt{q
i rrt_
gflersTw*ttr+tqa1ffiri
r
o
Please check that this question paper contains 8 printed pages.
o
Code number given on the right hand side of the question paper should be written on the
title page of the answer-book by the candidate.
r
Please check that this question paper contains 29 questions.
e
Please write dorvn the Serial Number of the question before attempting it.
o
15 minutes time has been allotted to read this question paper. The question paper will be
distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the
question paper only and will not write any answer on the answer-book during this period.
MATHEMATICS
tirilri.
Roll No.
fulfuHrtzt: 3
qr*l
Time allowed: 3 hours
l
Setfama+
ef6:
too
I
Maximum Marlts : 100
HFTTATFiltST:
(, nfrwerW* r
(ii)
W,rrr-wif zg vwtqi#7ezsldfur&a*: atddutTFr tqvgsrif tO
ywfeqC;
drdqr
vaiiaw d' r srsac 12 sqrsF'{+ drdfr
qtroirwi
r srs vlz
yw
tffisyaqoai6wi r
(iii) sus erf Hd'q'F# #arr
frffi
qr qrqq
wnr wr
qT
ena?qqdTqwr&r'
Er fiqrd
fr
(iv)
Yf
vw-wtfu
?Ef'# rfurftEreiot' ard eswltdzrT* siqf
qrd
z
qwl+
etmrTrfu*
r
dd
s*srifcc,lrqni
wd?futTqn1*
t
(v) eryrizr #vqhr
q?
avqfu
aaf t r ailqpqqir
qrl
w eilq dyqdtq sr{sft
qfur
rsr# f, r
tP.T.O.
General Instructions :
(i) All questions are comPulsory
(ii) The question paper consists of 29 questions divided into three sections A, B and C'
Section
-
A iomprises of 10 questions of one mark each, Section
-
B comprises of
72 questions of
four
mirks iach and Section
-
C comprises of 7 questions of six
marks each.
(iii) All questions in section
-
A are to be answered in one word, one sentence or as per
the exact requirement of the question'
(iv) There is no overall choice. However, intemal choice has been provided in 4
questions of
four
marles each and 2 questions of six marla each. You have to atternpt
only one of the alternatives in all such questions'
(v)
(Jse
of calculators is not permitted. You may askfor logarithmic tables, if required'
EIrg- 3[
SECTION. A
Irfi {qr 1 t 10 Hqtr+fi'YFT 1
eim
qr
t r
Question
numbers I to 10 carry l mark each'
t. {rRn i + 3i +ztmefu1 2i-ri * otwqq}qaro+tkq
t
Find the projection of the vector t + :i + 7t on the vector Zi
-
li + Ot.
Z. e-q TrkttT sr
qtq$ q+e'rur
frTil +itqq + fiE (a, b, c) t tt*t
qdr
t Eelr
qIm?T
?.(l+i+fl1=2$qqi6E$
1
Write the vector equation of the plane, passing through t[re point (a, b, c) and parallel
to the plane ?'
(l +i + [1
=
z.
3.
(r.n
.
#
* vfr-effisffE frftqq r
write the antiderivatir. or
(l.E.
fJ
4 frr[:
i].[l 1]=[ ; !].d(,-y)Hrq''ffe*lrsrq
,',[:i].[
l1]=[ ; l],o'u(x-v)
65t112
s. frq enryq*+tur
+t x*.ft(ra
dftrq ,,
tu \l
\
I
]=
,
Solve rhe following
mafrix equation forx:,
k Ul
\
I
]=
"
6
*l?
;l=
,l?
;l=l
6
-z
l.
7 , ltHl
.rrnrrmfufuq
r
6-2
73
,
write the value of x.
7. ek sin
(r*-,
f
* .or-, ,)
=
, t, nt, sT sFr um *tflqq r
rf sin
(sin-,
|
* .or-, ,)
=
,, then find the value of x.
8. ett {f+fieT*k'srf*,.if
*wg@
t,
,rnr * gokemrft
{Bmr
t,
qt
H-t a, b e R
_
{0}
Sfaeu*
U=*rnrqffit
rqkz x
(x*
5)
=
t0t ai*6rqparo+1fuq
r
Let
*
be a binary operation,
on the set of all non-zero real numbers, given
by a
x
b
=
+
for all a, b € R
- {0}.Find the value of x, given that2x (x x
5)
=
10.
g. qH
Erfr +1iqq ,
J.or-,
(sin
x) d.r.
f
Evaluate
:
J
cos-l (sin
x) d.r.
10.
qkntn
?
q\r
u'eqqffi{+tfq.l?l=
3,
lb,l=3*
? r. u,\rs.q:rs.nPflrt,
H}
? sil{
E' ++q or *iur fufuq r
If vectors
? and E' *r such rhat,
I
?
I =
3,
I
b'
|
=l
*a? x u, is a unit vector, then
write the angle between
? anA U'.
651112
'
,*'T'o'
Etug-Et
SECTION -
B
,rfi {reqr 11 t 22 rou*osq{
C
ei6.qr t r
Question
numbers
lLto22
cwry 4 marks each'
11.
qa
oirqrm flfi
qi&q
Ht
qot
f(x)
=
3#
-
+f
-
tz* + s
(a) fq{etq$iqlat
I
(b) ftirr 6rgqm
| 1
sIqET
elF,,
=
a sin30
dsrT y
=
a cos30
+M' e
=
fr
wwi
tot aqT
e${Tiq *qrfu'qur frrd
dfqq r
Find the intervals
in which the function
f(x)
=
3f
-
+x3
-
12* + 5 is
(a) strictlYincreasing
(b) strict$ decreasing
OR
Find the equations
of the tangent and normal to the curve x
=
a sin30 and
y
=
a cos30 at
lt
0
=7.
+
\
I
t2.
q,-nrnqm{q
J##"
eNrat
qmnrdqitq
,!a-:1Pffia'
f sin6x + cos6x
'
Evatuate:
J
ffiorr,
o,
OR
'
,
-ghp+
3.r
-
18 dr
Evaluate:
J
(r
t3. tTq
effitr€
q++tq
*} re
qfrkg
:
G-D**"=h'
Solve the following
differential
equation
:
(i-r)ff.rn=h'
65lLl2
t4.
15.
qk
y
=
,r t, ni frr6 +ifrTq 16
#
i
(*91
f
=
o.
rr y
=
.rr, prove ,nurff-+
eI-
)
=
o.
n A' A a x-) J
ffi drr €ffi 7, b,a + rdq' isd drftilq t-*-
[?
* u', B + ?, ? * ?]
=zli,ts,
d]
sTqqt
qfur
?, dnqr?tttt+.?* B +?
=daqr lAl
=
3,
IBI
=5ilqt
lAl =z
t r ?mr B
+eiqmr+lurxradfrq r
Prove that, for any three vectors ?, B, ?
[?
* B, B * ?, ? * ?]
=zli,B,
?]
OR
:-J
vectors E, b and d are such that ? * d + ?
=
d ana
l?l
=
3,
I
b'l
=
5 ana
l?l
=
z.
Find the angle between danO d.
16.
=f;*'(0,';
fls€*ltw tr 2 tan-t(}) * r".-'
ffi
+ z tarrtft)
=
f;
pro'ethatcorrf@
$it+slnx-1I-sm"r.
=l;
*' (0,'o)
Prove that2,rr-'
(,l
* r".-'
ffi
+ 2
'urrt(,l
=
i
17.
qIil
A
= {!,2,3,.....,gldelr
AxAi[ R\rs'{,+qt,
ail
Rx Aif
1a,
b), (c,0+ft{q
(a, b) R (c, d) uk a + d
=
b + c Ent
qfuflfsd
t r fucqifqqfu
pqs'lFqilr
{-{q t I (€trf,r
q,i
I(2, ,l
$ n6 eifvu r
Let A
= {1,
2, 3,....., 9} and R be the relation in A x A defined by (a, b) R (c, d) if
a + d
=
b + c for (a, b), (c, d) in A x A. Prove that R is an equivalence relation. Also
obtain the equivalence class (2,5)1.
6snt2 5
OR
lP.T.O.
Read More