JEE Exam  >  JEE Notes  >  Additional Study Material for JEE  >  Past Year Paper - Solutions, Mathematics (Set - 2), Delhi, 2014, Class 12, Maths

Past Year Paper - Solutions, Mathematics (Set - 2), Delhi, 2014, Class 12, Maths | Additional Study Material for JEE PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


14
QUESTION PAPER CODE 65/1/2
EXPECTED ANSWERS/V ALUE POINTS
SECTION - A
1-10. 1.   5 2.     
( ) { } ( ) 0 k
ˆ
j
ˆ
i
ˆ
k
ˆ
c j
ˆ
b i
ˆ
a – r = + + · + +
                   or
      
( ) c b a k
ˆ
j
ˆ
i
ˆ
r + + = + + ·
3.   2x
3/2
 + 2 x + c             4.    10 5.   x = 2
6.   x  =  +  6                    7.   
5
1
x =
8.   x = 25
9.   c
2
x
–
2
x p
2
+                 10.   
6
p
1×10 = 10 m
SECTION - B
11. (x) f ' = 12 x
3
 – 12 x
2
 – 24 x = 12 x (x + 1) (x – 2) 1+½ m
(x) f ' > 0,  ) , 2 ( ) 0 , 1 (– 8 ? ? U x               
- - - - - ? ?
+ + – –
1 m
(x) f ' < 0,  ) 2 , 0 ( ) 1 – , (– U 8 ? ? x 1 m
f(x) ? is strictly increasing in  ) , 2 ( ) 0 , 1 (– 8 U
½ m
and strictly decreasing in  ) 2 , 0 ( ) 1 – , (– U 8
OR
Point at  ?
?
?
?
?
?
=
2 2
a
,
2 2
a
is
4
p
?   ½ m
? cos ? sin 3a
d?
dx
?; sin ? cos 3a –
d?
dy
2 2
= =
1 m
?
   slope of tangent at 
4
p
?
2
2
4
p
?
? cos ? sin 3a
? sin ? cos 3a –
dx
dy
is
4
p
?
=
=
?
?
?
=
?
?
?
=
    =   
1 –
4
p
cot – =
1 m
Marks
– 1      0       2
PDF created with pdfFactory trial version www.pdffactory.com
Page 2


14
QUESTION PAPER CODE 65/1/2
EXPECTED ANSWERS/V ALUE POINTS
SECTION - A
1-10. 1.   5 2.     
( ) { } ( ) 0 k
ˆ
j
ˆ
i
ˆ
k
ˆ
c j
ˆ
b i
ˆ
a – r = + + · + +
                   or
      
( ) c b a k
ˆ
j
ˆ
i
ˆ
r + + = + + ·
3.   2x
3/2
 + 2 x + c             4.    10 5.   x = 2
6.   x  =  +  6                    7.   
5
1
x =
8.   x = 25
9.   c
2
x
–
2
x p
2
+                 10.   
6
p
1×10 = 10 m
SECTION - B
11. (x) f ' = 12 x
3
 – 12 x
2
 – 24 x = 12 x (x + 1) (x – 2) 1+½ m
(x) f ' > 0,  ) , 2 ( ) 0 , 1 (– 8 ? ? U x               
- - - - - ? ?
+ + – –
1 m
(x) f ' < 0,  ) 2 , 0 ( ) 1 – , (– U 8 ? ? x 1 m
f(x) ? is strictly increasing in  ) , 2 ( ) 0 , 1 (– 8 U
½ m
and strictly decreasing in  ) 2 , 0 ( ) 1 – , (– U 8
OR
Point at  ?
?
?
?
?
?
=
2 2
a
,
2 2
a
is
4
p
?   ½ m
? cos ? sin 3a
d?
dx
?; sin ? cos 3a –
d?
dy
2 2
= =
1 m
?
   slope of tangent at 
4
p
?
2
2
4
p
?
? cos ? sin 3a
? sin ? cos 3a –
dx
dy
is
4
p
?
=
=
?
?
?
=
?
?
?
=
    =   
1 –
4
p
cot – =
1 m
Marks
– 1      0       2
PDF created with pdfFactory trial version www.pdffactory.com
15
Equation of tangent at the point :
0
2
a
– y x
2 2
a
– x 1 –
2 2
a
– y = + ? ?
?
?
?
?
?
=
1 m
Equation of normal at the point :
0 y – x
2 2
a
– x 1
2 2
a
– y = ? ?
?
?
?
?
?
=
½ m
12.
( ) ] [
? ?
·
+ +
=
·
+
dx
x cos x sin
x cos x 3sin – x) cos x sin ( x cos x sin
dx
x cos x sin
x cos x sin
2 2
2 2 2 2 2 2 2
2 2
6 6
1½ m
? ?
?
?
?
?
?
·
= dx 3 –
x cos x sin
1
2 2
?
?
?
?
?
?
?
·
+
= dx 3 –
x cos x sin
x cos x sin
2 2
2 2
½ m
( )
?
+ = dx 3 – x cosec x sec
2 2
½ m
=   tan x – cot x – 3x + c 1½ m
(Accept – 2 cot 2x – 3x + c also)
OR
( )
?
+ dx 18 – 3x x 3 – x
2
( )
? ?
+ + + = dx 18 – 3x x
2
9
– dx 18 – 3x x 3 2x
2
1
2 2
1 m
( ) ( )
?
?
?
?
?
?
?
+ + · = dx
2
9
–
2
3
x
2
9
– 18 – 3x x
3
2
2
1
2
2
2
3
2
1½ m
( )
2
9
– 18 – 3x x
3
1
2
3
2
+ =
           c 18 – 3x x
2
3
x log
8
81
– 18 – 3x x
2
2
3
x
2 2
+ + + + +
?
?
?
?
?
?
?
?
?
?
?
?
?
+
1½ m
PDF created with pdfFactory trial version www.pdffactory.com
Page 3


14
QUESTION PAPER CODE 65/1/2
EXPECTED ANSWERS/V ALUE POINTS
SECTION - A
1-10. 1.   5 2.     
( ) { } ( ) 0 k
ˆ
j
ˆ
i
ˆ
k
ˆ
c j
ˆ
b i
ˆ
a – r = + + · + +
                   or
      
( ) c b a k
ˆ
j
ˆ
i
ˆ
r + + = + + ·
3.   2x
3/2
 + 2 x + c             4.    10 5.   x = 2
6.   x  =  +  6                    7.   
5
1
x =
8.   x = 25
9.   c
2
x
–
2
x p
2
+                 10.   
6
p
1×10 = 10 m
SECTION - B
11. (x) f ' = 12 x
3
 – 12 x
2
 – 24 x = 12 x (x + 1) (x – 2) 1+½ m
(x) f ' > 0,  ) , 2 ( ) 0 , 1 (– 8 ? ? U x               
- - - - - ? ?
+ + – –
1 m
(x) f ' < 0,  ) 2 , 0 ( ) 1 – , (– U 8 ? ? x 1 m
f(x) ? is strictly increasing in  ) , 2 ( ) 0 , 1 (– 8 U
½ m
and strictly decreasing in  ) 2 , 0 ( ) 1 – , (– U 8
OR
Point at  ?
?
?
?
?
?
=
2 2
a
,
2 2
a
is
4
p
?   ½ m
? cos ? sin 3a
d?
dx
?; sin ? cos 3a –
d?
dy
2 2
= =
1 m
?
   slope of tangent at 
4
p
?
2
2
4
p
?
? cos ? sin 3a
? sin ? cos 3a –
dx
dy
is
4
p
?
=
=
?
?
?
=
?
?
?
=
    =   
1 –
4
p
cot – =
1 m
Marks
– 1      0       2
PDF created with pdfFactory trial version www.pdffactory.com
15
Equation of tangent at the point :
0
2
a
– y x
2 2
a
– x 1 –
2 2
a
– y = + ? ?
?
?
?
?
?
=
1 m
Equation of normal at the point :
0 y – x
2 2
a
– x 1
2 2
a
– y = ? ?
?
?
?
?
?
=
½ m
12.
( ) ] [
? ?
·
+ +
=
·
+
dx
x cos x sin
x cos x 3sin – x) cos x sin ( x cos x sin
dx
x cos x sin
x cos x sin
2 2
2 2 2 2 2 2 2
2 2
6 6
1½ m
? ?
?
?
?
?
?
·
= dx 3 –
x cos x sin
1
2 2
?
?
?
?
?
?
?
·
+
= dx 3 –
x cos x sin
x cos x sin
2 2
2 2
½ m
( )
?
+ = dx 3 – x cosec x sec
2 2
½ m
=   tan x – cot x – 3x + c 1½ m
(Accept – 2 cot 2x – 3x + c also)
OR
( )
?
+ dx 18 – 3x x 3 – x
2
( )
? ?
+ + + = dx 18 – 3x x
2
9
– dx 18 – 3x x 3 2x
2
1
2 2
1 m
( ) ( )
?
?
?
?
?
?
?
+ + · = dx
2
9
–
2
3
x
2
9
– 18 – 3x x
3
2
2
1
2
2
2
3
2
1½ m
( )
2
9
– 18 – 3x x
3
1
2
3
2
+ =
           c 18 – 3x x
2
3
x log
8
81
– 18 – 3x x
2
2
3
x
2 2
+ + + + +
?
?
?
?
?
?
?
?
?
?
?
?
?
+
1½ m
PDF created with pdfFactory trial version www.pdffactory.com
16
  or
( )
8
9
– 18 – 3x x
3
1
2
3
2
+ =
             
{ c 18 – 3x x
2
3
x log
2
81
– 18 – 3x x ) 3 2 (
2 2
+ + + + + + x
13. Given differential equation can be written as
( )
2
2
2
1 – x
2
y
1 – x
2x
dx
dy
= +
1 m
Integrating factor  =  1 – x e e
2 1) – (x log
dx 
1 –
x 2
2 2
= =
?
x
1 m
c dx 1) – (x  
1) – (x
2
1) – (x y      is Solution 
2
2 2
2
+ · = · ?
? 1 m
         
c dx
1 – x
1
2 1) – (x y      
2
2
+ = ?
?
         
c
1 x
1 – x
log 1) – (x y      
2
+
+
= ?
1 m
14. y = x
x
  
?
  log y = x log x,                                             Taking log of both sides ½ m
dx
dy
y
1
?
  =  log x + 1,                                                               Diff. w r t “x” 1½ m
,
x
1
dx
dy
y
1
–
dx
y d
y
1
2
2 2
2
=
?
?
?
?
?
?
?      Diff. w r t “x” 1½ m
0
x
y
–
dx
dy
y
1
–
dx
y d
2
2
2
=
?
?
?
?
?
?
?
½ m
15.
?
?
?
?
?
?
?
?
?
?
?
?
+ ×
?
?
?
?
?
?
+ ·
?
?
?
?
?
?
+ =
?
?
?
?
?
?
+ + +
? ? ? ? ? ? ? ? ? ? ? ?
a c c b b a a c , c b , b a ½ m
=  
?
?
?
?
?
?
× + × + × + ×
?
?
?
?
?
?
+
? ? ? ? ? ? ? ? ? ?
a c c c a b c b b a
1 m
PDF created with pdfFactory trial version www.pdffactory.com
Page 4


14
QUESTION PAPER CODE 65/1/2
EXPECTED ANSWERS/V ALUE POINTS
SECTION - A
1-10. 1.   5 2.     
( ) { } ( ) 0 k
ˆ
j
ˆ
i
ˆ
k
ˆ
c j
ˆ
b i
ˆ
a – r = + + · + +
                   or
      
( ) c b a k
ˆ
j
ˆ
i
ˆ
r + + = + + ·
3.   2x
3/2
 + 2 x + c             4.    10 5.   x = 2
6.   x  =  +  6                    7.   
5
1
x =
8.   x = 25
9.   c
2
x
–
2
x p
2
+                 10.   
6
p
1×10 = 10 m
SECTION - B
11. (x) f ' = 12 x
3
 – 12 x
2
 – 24 x = 12 x (x + 1) (x – 2) 1+½ m
(x) f ' > 0,  ) , 2 ( ) 0 , 1 (– 8 ? ? U x               
- - - - - ? ?
+ + – –
1 m
(x) f ' < 0,  ) 2 , 0 ( ) 1 – , (– U 8 ? ? x 1 m
f(x) ? is strictly increasing in  ) , 2 ( ) 0 , 1 (– 8 U
½ m
and strictly decreasing in  ) 2 , 0 ( ) 1 – , (– U 8
OR
Point at  ?
?
?
?
?
?
=
2 2
a
,
2 2
a
is
4
p
?   ½ m
? cos ? sin 3a
d?
dx
?; sin ? cos 3a –
d?
dy
2 2
= =
1 m
?
   slope of tangent at 
4
p
?
2
2
4
p
?
? cos ? sin 3a
? sin ? cos 3a –
dx
dy
is
4
p
?
=
=
?
?
?
=
?
?
?
=
    =   
1 –
4
p
cot – =
1 m
Marks
– 1      0       2
PDF created with pdfFactory trial version www.pdffactory.com
15
Equation of tangent at the point :
0
2
a
– y x
2 2
a
– x 1 –
2 2
a
– y = + ? ?
?
?
?
?
?
=
1 m
Equation of normal at the point :
0 y – x
2 2
a
– x 1
2 2
a
– y = ? ?
?
?
?
?
?
=
½ m
12.
( ) ] [
? ?
·
+ +
=
·
+
dx
x cos x sin
x cos x 3sin – x) cos x sin ( x cos x sin
dx
x cos x sin
x cos x sin
2 2
2 2 2 2 2 2 2
2 2
6 6
1½ m
? ?
?
?
?
?
?
·
= dx 3 –
x cos x sin
1
2 2
?
?
?
?
?
?
?
·
+
= dx 3 –
x cos x sin
x cos x sin
2 2
2 2
½ m
( )
?
+ = dx 3 – x cosec x sec
2 2
½ m
=   tan x – cot x – 3x + c 1½ m
(Accept – 2 cot 2x – 3x + c also)
OR
( )
?
+ dx 18 – 3x x 3 – x
2
( )
? ?
+ + + = dx 18 – 3x x
2
9
– dx 18 – 3x x 3 2x
2
1
2 2
1 m
( ) ( )
?
?
?
?
?
?
?
+ + · = dx
2
9
–
2
3
x
2
9
– 18 – 3x x
3
2
2
1
2
2
2
3
2
1½ m
( )
2
9
– 18 – 3x x
3
1
2
3
2
+ =
           c 18 – 3x x
2
3
x log
8
81
– 18 – 3x x
2
2
3
x
2 2
+ + + + +
?
?
?
?
?
?
?
?
?
?
?
?
?
+
1½ m
PDF created with pdfFactory trial version www.pdffactory.com
16
  or
( )
8
9
– 18 – 3x x
3
1
2
3
2
+ =
             
{ c 18 – 3x x
2
3
x log
2
81
– 18 – 3x x ) 3 2 (
2 2
+ + + + + + x
13. Given differential equation can be written as
( )
2
2
2
1 – x
2
y
1 – x
2x
dx
dy
= +
1 m
Integrating factor  =  1 – x e e
2 1) – (x log
dx 
1 –
x 2
2 2
= =
?
x
1 m
c dx 1) – (x  
1) – (x
2
1) – (x y      is Solution 
2
2 2
2
+ · = · ?
? 1 m
         
c dx
1 – x
1
2 1) – (x y      
2
2
+ = ?
?
         
c
1 x
1 – x
log 1) – (x y      
2
+
+
= ?
1 m
14. y = x
x
  
?
  log y = x log x,                                             Taking log of both sides ½ m
dx
dy
y
1
?
  =  log x + 1,                                                               Diff. w r t “x” 1½ m
,
x
1
dx
dy
y
1
–
dx
y d
y
1
2
2 2
2
=
?
?
?
?
?
?
?      Diff. w r t “x” 1½ m
0
x
y
–
dx
dy
y
1
–
dx
y d
2
2
2
=
?
?
?
?
?
?
?
½ m
15.
?
?
?
?
?
?
?
?
?
?
?
?
+ ×
?
?
?
?
?
?
+ ·
?
?
?
?
?
?
+ =
?
?
?
?
?
?
+ + +
? ? ? ? ? ? ? ? ? ? ? ?
a c c b b a a c , c b , b a ½ m
=  
?
?
?
?
?
?
× + × + × + ×
?
?
?
?
?
?
+
? ? ? ? ? ? ? ? ? ?
a c c c a b c b b a
1 m
PDF created with pdfFactory trial version www.pdffactory.com
17
=  ?
?
?
?
?
?
× · +
?
?
?
?
?
?
× · +
?
?
?
?
?
?
× · +
?
?
?
?
?
?
× ·
? ? ? ? ? ? ? ? ? ? ? ?
c b b a c a a b a c b a
1½ m
+ 
?
?
?
?
?
?
× · +
?
?
?
?
?
?
× ·
? ? ? ? ? ?
a c b a b b
   
?
?
?
?
?
?
=
?
?
?
?
?
?
× · =
?
?
?
?
?
?
× · =
?
?
?
?
?
?
× ·
?
?
?
?
?
?
?
?
?
× ·
? ? ? ? ? ? ? ? ? ? ? ?
0 a b b c b b a c a , a b a
=  
?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
?
?
?
?
× ·
? ? ? ? ? ?
c , b , a 2 c b a 2 1 m
OR
? ? ? ? ? ? ?
= + ? = + + c – b a 0 c b a
½ m
2 2 2
c c – b a
?
?
?
?
?
?
=
?
?
?
?
?
?
=
?
?
?
?
?
?
+ ?
? ? ? ?
½ m
2 2 2
c b a 2 b a
? ? ? ? ?
= · + + ?
1 m
? ? ? ?
= + + ? b & a between angle being ? 49, ? cos b a 2 25 9
1 m
3
p
?
2
1
5 3 2
15
? cos = ? =
· ·
= ?
1 m
16. cot
–1
  
?
?
?
?
?
?
?
?
?
?
+
+ +
x sin – 1 – x sin 1
x sin – 1 x sin 1
=  cot
–1  
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
- -
?
?
?
?
?
?
+
?
?
?
?
?
?
- +
?
?
?
?
?
?
+
2 2
2 2
2
x
sin 
2
x
 cos
2
x
sin 
2
x
 cos
2
x
sin 
2
x
 cos
2
x
sin 
2
x
 cos
2½ m
PDF created with pdfFactory trial version www.pdffactory.com
Page 5


14
QUESTION PAPER CODE 65/1/2
EXPECTED ANSWERS/V ALUE POINTS
SECTION - A
1-10. 1.   5 2.     
( ) { } ( ) 0 k
ˆ
j
ˆ
i
ˆ
k
ˆ
c j
ˆ
b i
ˆ
a – r = + + · + +
                   or
      
( ) c b a k
ˆ
j
ˆ
i
ˆ
r + + = + + ·
3.   2x
3/2
 + 2 x + c             4.    10 5.   x = 2
6.   x  =  +  6                    7.   
5
1
x =
8.   x = 25
9.   c
2
x
–
2
x p
2
+                 10.   
6
p
1×10 = 10 m
SECTION - B
11. (x) f ' = 12 x
3
 – 12 x
2
 – 24 x = 12 x (x + 1) (x – 2) 1+½ m
(x) f ' > 0,  ) , 2 ( ) 0 , 1 (– 8 ? ? U x               
- - - - - ? ?
+ + – –
1 m
(x) f ' < 0,  ) 2 , 0 ( ) 1 – , (– U 8 ? ? x 1 m
f(x) ? is strictly increasing in  ) , 2 ( ) 0 , 1 (– 8 U
½ m
and strictly decreasing in  ) 2 , 0 ( ) 1 – , (– U 8
OR
Point at  ?
?
?
?
?
?
=
2 2
a
,
2 2
a
is
4
p
?   ½ m
? cos ? sin 3a
d?
dx
?; sin ? cos 3a –
d?
dy
2 2
= =
1 m
?
   slope of tangent at 
4
p
?
2
2
4
p
?
? cos ? sin 3a
? sin ? cos 3a –
dx
dy
is
4
p
?
=
=
?
?
?
=
?
?
?
=
    =   
1 –
4
p
cot – =
1 m
Marks
– 1      0       2
PDF created with pdfFactory trial version www.pdffactory.com
15
Equation of tangent at the point :
0
2
a
– y x
2 2
a
– x 1 –
2 2
a
– y = + ? ?
?
?
?
?
?
=
1 m
Equation of normal at the point :
0 y – x
2 2
a
– x 1
2 2
a
– y = ? ?
?
?
?
?
?
=
½ m
12.
( ) ] [
? ?
·
+ +
=
·
+
dx
x cos x sin
x cos x 3sin – x) cos x sin ( x cos x sin
dx
x cos x sin
x cos x sin
2 2
2 2 2 2 2 2 2
2 2
6 6
1½ m
? ?
?
?
?
?
?
·
= dx 3 –
x cos x sin
1
2 2
?
?
?
?
?
?
?
·
+
= dx 3 –
x cos x sin
x cos x sin
2 2
2 2
½ m
( )
?
+ = dx 3 – x cosec x sec
2 2
½ m
=   tan x – cot x – 3x + c 1½ m
(Accept – 2 cot 2x – 3x + c also)
OR
( )
?
+ dx 18 – 3x x 3 – x
2
( )
? ?
+ + + = dx 18 – 3x x
2
9
– dx 18 – 3x x 3 2x
2
1
2 2
1 m
( ) ( )
?
?
?
?
?
?
?
+ + · = dx
2
9
–
2
3
x
2
9
– 18 – 3x x
3
2
2
1
2
2
2
3
2
1½ m
( )
2
9
– 18 – 3x x
3
1
2
3
2
+ =
           c 18 – 3x x
2
3
x log
8
81
– 18 – 3x x
2
2
3
x
2 2
+ + + + +
?
?
?
?
?
?
?
?
?
?
?
?
?
+
1½ m
PDF created with pdfFactory trial version www.pdffactory.com
16
  or
( )
8
9
– 18 – 3x x
3
1
2
3
2
+ =
             
{ c 18 – 3x x
2
3
x log
2
81
– 18 – 3x x ) 3 2 (
2 2
+ + + + + + x
13. Given differential equation can be written as
( )
2
2
2
1 – x
2
y
1 – x
2x
dx
dy
= +
1 m
Integrating factor  =  1 – x e e
2 1) – (x log
dx 
1 –
x 2
2 2
= =
?
x
1 m
c dx 1) – (x  
1) – (x
2
1) – (x y      is Solution 
2
2 2
2
+ · = · ?
? 1 m
         
c dx
1 – x
1
2 1) – (x y      
2
2
+ = ?
?
         
c
1 x
1 – x
log 1) – (x y      
2
+
+
= ?
1 m
14. y = x
x
  
?
  log y = x log x,                                             Taking log of both sides ½ m
dx
dy
y
1
?
  =  log x + 1,                                                               Diff. w r t “x” 1½ m
,
x
1
dx
dy
y
1
–
dx
y d
y
1
2
2 2
2
=
?
?
?
?
?
?
?      Diff. w r t “x” 1½ m
0
x
y
–
dx
dy
y
1
–
dx
y d
2
2
2
=
?
?
?
?
?
?
?
½ m
15.
?
?
?
?
?
?
?
?
?
?
?
?
+ ×
?
?
?
?
?
?
+ ·
?
?
?
?
?
?
+ =
?
?
?
?
?
?
+ + +
? ? ? ? ? ? ? ? ? ? ? ?
a c c b b a a c , c b , b a ½ m
=  
?
?
?
?
?
?
× + × + × + ×
?
?
?
?
?
?
+
? ? ? ? ? ? ? ? ? ?
a c c c a b c b b a
1 m
PDF created with pdfFactory trial version www.pdffactory.com
17
=  ?
?
?
?
?
?
× · +
?
?
?
?
?
?
× · +
?
?
?
?
?
?
× · +
?
?
?
?
?
?
× ·
? ? ? ? ? ? ? ? ? ? ? ?
c b b a c a a b a c b a
1½ m
+ 
?
?
?
?
?
?
× · +
?
?
?
?
?
?
× ·
? ? ? ? ? ?
a c b a b b
   
?
?
?
?
?
?
=
?
?
?
?
?
?
× · =
?
?
?
?
?
?
× · =
?
?
?
?
?
?
× ·
?
?
?
?
?
?
?
?
?
× ·
? ? ? ? ? ? ? ? ? ? ? ?
0 a b b c b b a c a , a b a
=  
?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
?
?
?
?
× ·
? ? ? ? ? ?
c , b , a 2 c b a 2 1 m
OR
? ? ? ? ? ? ?
= + ? = + + c – b a 0 c b a
½ m
2 2 2
c c – b a
?
?
?
?
?
?
=
?
?
?
?
?
?
=
?
?
?
?
?
?
+ ?
? ? ? ?
½ m
2 2 2
c b a 2 b a
? ? ? ? ?
= · + + ?
1 m
? ? ? ?
= + + ? b & a between angle being ? 49, ? cos b a 2 25 9
1 m
3
p
?
2
1
5 3 2
15
? cos = ? =
· ·
= ?
1 m
16. cot
–1
  
?
?
?
?
?
?
?
?
?
?
+
+ +
x sin – 1 – x sin 1
x sin – 1 x sin 1
=  cot
–1  
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
- -
?
?
?
?
?
?
+
?
?
?
?
?
?
- +
?
?
?
?
?
?
+
2 2
2 2
2
x
sin 
2
x
 cos
2
x
sin 
2
x
 cos
2
x
sin 
2
x
 cos
2
x
sin 
2
x
 cos
2½ m
PDF created with pdfFactory trial version www.pdffactory.com
18
2
x
2
x
cot cot
2
x
sin 2
2
x
cos 2
cot
1 1
= ?
?
?
?
?
?
=
?
?
?
?
?
?
?
?
?
?
=
- -
1½ m
OR
?
?
?
?
?
?
?
?
+
?
?
?
?
?
?
+ =
- - -
7
2 5
sec
8
1
tan
5
1
tan 2 LHS
1 1 1
        
7
1
tan
40
1
– 1
8
1
5
1
tan 2
1 1 - -
+
?
?
?
?
?
?
?
?
?
?
?
?
+
=
1½+½ m
        
7
1
tan
3
1
– 1
3
1
2
tan
7
1
tan
3
1
tan 2
1
2
1 1 1 - - - -
+
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
·
= + =
1 m
        
RHS
4
p
) 1 ( tan
25
25
tan
7
1
tan
4
3
tan
1 1 1 1
= = = = + =
- - - -
1 m
17. A A    b) (a, × ? ?
a + b = b + a    ?  (a, b)  R (a, b)    ?  R is reflexive 1 m
For (a, b), (c, d)  A A × ?
If (a, b) R (c, d)  i.e. a + d = b + c  ?  c + b  =  d + a
then (c, d) R (a, b)   ?  R is symmetric 1 m
For (a, b), (c, d), (e, f)  A A × ?
If (a, b) R (c, d) & (c, d) R (e, f)  i.e. a + d = b + c  &  c + f = d + e
Adding, a + d + c + f = b + c + d + e    ?    a + f  =  b + e
PDF created with pdfFactory trial version www.pdffactory.com
Read More
22 videos|162 docs|17 tests

Top Courses for JEE

FAQs on Past Year Paper - Solutions, Mathematics (Set - 2), Delhi, 2014, Class 12, Maths - Additional Study Material for JEE

1. What are the important topics to study for the Mathematics (Set - 2) exam in Delhi, 2014 for Class 12 JEE?
Ans. Some important topics to study for the Mathematics (Set - 2) exam in Delhi, 2014 for Class 12 JEE include: - Matrices and Determinants - Continuity and Differentiability - Application of Derivatives - Integrals - Differential Equations
2. How can I effectively prepare for the Mathematics (Set - 2) exam in Delhi, 2014 for Class 12 JEE?
Ans. To effectively prepare for the Mathematics (Set - 2) exam in Delhi, 2014 for Class 12 JEE, you can follow these steps: - Create a study schedule and allocate specific time slots for each topic. - Understand the concepts thoroughly by referring to your textbook and additional study materials. - Practice solving a variety of problems from each topic to enhance your problem-solving skills. - Solve the past year papers and mock tests to get familiar with the exam pattern and time management. - Seek help from your teachers or join coaching classes if you're facing difficulties in understanding any topic.
3. Are there any specific tips for solving the Mathematics (Set - 2) exam in Delhi, 2014 for Class 12 JEE efficiently?
Ans. Yes, here are some specific tips for solving the Mathematics (Set - 2) exam in Delhi, 2014 for Class 12 JEE efficiently: - Read the question carefully and understand what is being asked before attempting to solve it. - Manage your time effectively by setting a time limit for each question and moving on if you're stuck. - Practice using shortcuts and tricks to solve problems faster, especially in topics like calculus and algebra. - Double-check your calculations and answers to avoid any silly mistakes. - Focus on accuracy rather than attempting all the questions. It's better to solve fewer questions correctly than attempting more with errors.
4. Can you provide some additional resources for studying Mathematics for the Class 12 JEE exam?
Ans. Yes, here are some additional resources for studying Mathematics for the Class 12 JEE exam: - NCERT textbooks for Class 12 Mathematics - Reference books like "RD Sharma Mathematics for Class 12" and "Arihant's Handbook of Mathematics for Class 12" - Online platforms and websites that offer video lectures and practice questions, such as Khan Academy, BYJU'S, and Vedantu. - Joining coaching institutes that specialize in JEE preparation can provide comprehensive study materials and guidance from experienced teachers.
5. What is the weightage of the Mathematics (Set - 2) exam in Delhi, 2014 for Class 12 JEE?
Ans. The Mathematics (Set - 2) exam in Delhi, 2014 for Class 12 JEE carries a weightage of 100 marks. It is an important subject and contributes significantly to the overall JEE score. It is essential to perform well in this exam to secure a good rank in the JEE Main and JEE Advanced exams.
22 videos|162 docs|17 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Semester Notes

,

MCQs

,

Delhi

,

past year papers

,

2014

,

2014

,

Exam

,

Extra Questions

,

Mathematics (Set - 2)

,

Class 12

,

Past Year Paper - Solutions

,

ppt

,

pdf

,

video lectures

,

Mathematics (Set - 2)

,

shortcuts and tricks

,

Objective type Questions

,

Mathematics (Set - 2)

,

Delhi

,

Maths | Additional Study Material for JEE

,

Maths | Additional Study Material for JEE

,

Free

,

Sample Paper

,

Previous Year Questions with Solutions

,

Summary

,

Class 12

,

Past Year Paper - Solutions

,

Important questions

,

study material

,

Delhi

,

Class 12

,

practice quizzes

,

Viva Questions

,

mock tests for examination

,

2014

,

Past Year Paper - Solutions

,

Maths | Additional Study Material for JEE

;