The value of limit x tends to pi/2 (sinx - (sinx)^sinx )/ 1-sinx ln(...
Solution to limit x tends to pi/2 (sinx - (sinx)^sinx )/ 1-sinx ln(sinx)
Step 1: Understanding the problem
- The given expression is a limit expression, where x tends to pi/2.
- We need to simplify the expression and find its value.
Step 2: Simplifying the expression
- We can use L'Hopital's rule to simplify the expression.
- Applying L'Hopital's rule, we get:
limit x tends to pi/2 (cosx - cosx^sinx * (1 + ln(sin(x))) / cosx
= limit x tends to pi/2 (1 - cosx^sinx * ln(sin(x))) / sinx
- Again applying L'Hopital's rule, we get:
limit x tends to pi/2 (cosx^sinx * (ln(cosx) - ln(sin(x)))^2 + cosx^sinx * (1/sin(x))) / cosx
= limit x tends to pi/2 (ln(cosx) - ln(sin(x)))^2 + (cosx^sinx / sinx)
Step 3: Evaluating the limit
- We can now directly substitute pi/2 in the expression to evaluate the limit.
- On substituting pi/2, we get:
limit x tends to pi/2 (ln(cosx) - ln(sin(x)))^2 + (cosx^sinx / sinx)
= (ln(0) - ln(1))^2 + (0/1)
= undefined
- Hence, the limit does not exist.
Step 4: Conclusion
- The given limit does not exist as it evaluates to undefined on substituting pi/2 in the expression.
- Therefore, we cannot find its value.