Y=(cot x)/(1 cot x).differentiate it?
Y=(cot x)/(1 cot x).differentiate it?
Deriving Y=(cot x)/(1 cot x)
Step 1: Simplify the given expression:
We know that cot x = cos x/sin x
Therefore, Y = (cos x/sin x)/(1-cos x/sin x)
Simplifying the denominator, we get:
Y = cos x/(sin x - cos x)
Step 2: Use Quotient Rule:
To differentiate Y, we will use the quotient rule:
(d/dx)[f(x)/g(x)] = [g(x)f'(x) - f(x)g'(x)] / [g(x)]^2
Let f(x) = cos x
And g(x) = sin x - cos x
Therefore, f'(x) = -sin x
And g'(x) = cos x + sin x
Now, applying the quotient rule, we get:
Y' = [(sin x - cos x)(-sin x) - (cos x)(cos x + sin x)] / (sin x - cos x)^2
Simplifying the numerator, we get:
Y' = [-sin^2 x + cos^2 x - cos^2 x - cos x sin x] / (sin x - cos x)^2
Y' = [-sin^2 x - 2cos^2 x - cos x sin x] / (sin x - cos x)^2
Step 3: Simplify the derivative:
Now, we can simplify Y' by using trigonometric identities:
- 2cos^2 x = 1 - sin^2 x - cos^2 x
- cos x sin x = sin 2x/2
Substituting these values, we get:
Y' = [(sin^2 x - cos^2 x) - (sin^2 x + cos^2 x - 1) - sin 2x/2] / (sin x - cos x)^2
Simplifying further, we get:
Y' = [1 - sin 2x/2] / (sin x - cos x)^2
Thus, the derivative of Y is [1 - sin 2x/2] / (sin x - cos x)^2.