Class 11 Exam  >  Class 11 Questions  >  If sub atomic particles constitute an atom th... Start Learning for Free
If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ?
Most Upvoted Answer
If sub atomic particles constitute an atom then why are atoms consider...
It was dalton who gave the theory that atoms are the smallest unit there can be and it can't be divided further. If we see now, we know atoms are further made if smaller units some of them having independend existance. So, considering atoms as basic unit and smallest units is wrong.
Community Answer
If sub atomic particles constitute an atom then why are atoms consider...
Atoms: The Basic Unit of Matter

Atoms are considered the basic unit of matter and the smallest units for several reasons. To understand why, let's delve into the structure and characteristics of atoms.

1. Definition and Composition of Atoms
- Atoms are the fundamental building blocks of matter.
- They consist of three main subatomic particles: protons, neutrons, and electrons.
- Protons carry a positive charge, neutrons are neutral, and electrons carry a negative charge.
- The protons and neutrons are located in the nucleus at the center of the atom, while electrons orbit around the nucleus in electron shells.

2. Size of Atoms
- Atoms are incredibly small, with sizes ranging from 0.1 to 0.5 nanometers (nm).
- To put this into perspective, a sheet of paper is about 100,000 nanometers thick.
- Due to their minuscule size, atoms cannot be seen with the naked eye and require advanced scientific techniques, such as electron microscopes, to be observed.

3. Stability of Atoms
- Atoms are considered stable when they have a balanced number of protons and electrons, resulting in a neutral charge.
- The number of protons determines the atomic number, which defines the element.
- For example, hydrogen has one proton, helium has two, and oxygen has eight.
- The arrangement and number of electrons in the electron shells determine the atom's chemical properties and behavior.

4. Combination of Atoms
- Atoms have the ability to combine with other atoms to form molecules and compounds.
- These combinations occur through chemical reactions, where atoms share or transfer electrons with one another.
- The resulting molecules and compounds exhibit unique properties and characteristics that differ from their constituent atoms.

5. Indivisibility of Atoms
- Atoms are considered indivisible because they cannot be broken down into smaller particles by chemical means.
- While subatomic particles exist within atoms, they remain bound together by strong forces, such as the electromagnetic force and the strong nuclear force.
- Breaking these bonds requires immense amounts of energy, often achieved through nuclear reactions.

6. Energy Levels and Quantum Mechanics
- Atoms also exhibit quantized energy levels, as described by quantum mechanics.
- Electrons occupy specific energy levels or orbitals, and they can transition between these levels by absorbing or emitting energy in discrete quantities.
- This phenomenon explains various atomic phenomena and spectroscopy.

Conclusion
In summary, atoms are considered the basic unit of matter and the smallest units due to their fundamental composition, small size, stability, ability to combine, indivisibility, and their behavior governed by quantum mechanics. Understanding the structure and properties of atoms is crucial in comprehending the nature of matter and the universe around us.
Attention Class 11 Students!
To make sure you are not studying endlessly, EduRev has designed Class 11 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 11.
Explore Courses for Class 11 exam

Similar Class 11 Doubts

Attempt All sub parts from each question.Atomic Hypothesis in Ancient India and Greece Though John Dalton is credited with the introduction of atomic view point in modern science, scholars in ancient India and Greece conjectured long before the existence of atoms and molecules. In the Vaisheshika school of thought in India founded by Kanada (Sixth century B.C.) the atomic picture was developed in considerable detail. Atoms were thought to be eternal, indivisible, infinitesimal and ultimate parts of matter. It was argued that if matter could be subdivided without an end, there would be no difference between a mustard seed and the Meru mountain. The four kinds of atoms (Paramanu — Sanskrit word for the smallest particl e) postulated were Bhoomi (Earth), Ap (water), Tejas (fire) and Vayu (air) that have characteristic mass and other attributes, we re propounded. Akasa (space) was thought to have no atomic structure and was continuous and inert. Atoms combine to form different molecules (e.g. two atoms combine to form a diatomic molecule dvyanuka, three atoms form a tryanuka or a triatomic molecule), their properties depending upon the nature and ratio of the constituent atoms. The size of the atoms was also estimated, by conjecture or by methods that are not known to us. The estimates vary. In Lalitavistara, a famous biography of the Buddha written mainly in the second century B.C., the estimate is close to the modern estimate of atomic size, of the order of 10–10 m. In ancient Greece, Democritus (Fourth century B.C.) is best known for his atomic hypothesis. The word ‘atom’ means ‘indivisible’ in Greek. According to him, atoms differ from each other physically, in shape, size and other properties and this resulted in the different properties of the substances formed by their combination. The atoms of water were smooth and round and unable to ‘hook’ on to each other, which is why liquid /water flows easily. The atoms of earth were rough and jagged, so they held together to form hard substances. The atoms of fire were thorny which is why it caused painful burns. These fascinating ideas, despite their ingenuity, could not evolve much further, perhaps because they were intuitive conjectures and speculations not tested and modified by quantitative experiments–the hallmark of modern science.Q. In Greek, “atom” means

Attempt All sub parts from each question.Atomic Hypothesis in Ancient India and Greece Though John Dalton is credited with the introduction of atomic view point in modern science, scholars in ancient India and Greece conjectured long before the existence of atoms and molecules. In the Vaisheshika school of thought in India founded by Kanada (Sixth century B.C.) the atomic picture was developed in considerable detail. Atoms were thought to be eternal, indivisible, infinitesimal and ultimate parts of matter. It was argued that if matter could be subdivided without an end, there would be no difference between a mustard seed and the Meru mountain. The four kinds of atoms (Paramanu — Sanskrit word for the smallest particl e) postulated were Bhoomi (Earth), Ap (water), Tejas (fire) and Vayu (air) that have characteristic mass and other attributes, we re propounded. Akasa (space) was thought to have no atomic structure and was continuous and inert. Atoms combine to form different molecules (e.g. two atoms combine to form a diatomic molecule dvyanuka, three atoms form a tryanuka or a triatomic molecule), their properties depending upon the nature and ratio of the constituent atoms. The size of the atoms was also estimated, by conjecture or by methods that are not known to us. The estimates vary. In Lalitavistara, a famous biography of the Buddha written mainly in the second century B.C., the estimate is close to the modern estimate of atomic size, of the order of 10–10 m. In ancient Greece, Democritus (Fourth century B.C.) is best known for his atomic hypothesis. The word ‘atom’ means ‘indivisible’ in Greek. According to him, atoms differ from each other physically, in shape, size and other properties and this resulted in the different properties of the substances formed by their combination. The atoms of water were smooth and round and unable to ‘hook’ on to each other, which is why liquid /water flows easily. The atoms of earth were rough and jagged, so they held together to form hard substances. The atoms of fire were thorny which is why it caused painful burns. These fascinating ideas, despite their ingenuity, could not evolve much further, perhaps because they were intuitive conjectures and speculations not tested and modified by quantitative experiments–the hallmark of modern science.Q. In ancient Greece, who is best known for his atomic hypothesis?

Attempt All sub parts from each question.Atomic Hypothesis in Ancient India and Greece Though John Dalton is credited with the introduction of atomic view point in modern science, scholars in ancient India and Greece conjectured long before the existence of atoms and molecules. In the Vaisheshika school of thought in India founded by Kanada (Sixth century B.C.) the atomic picture was developed in considerable detail. Atoms were thought to be eternal, indivisible, infinitesimal and ultimate parts of matter. It was argued that if matter could be subdivided without an end, there would be no difference between a mustard seed and the Meru mountain. The four kinds of atoms (Paramanu — Sanskrit word for the smallest particl e) postulated were Bhoomi (Earth), Ap (water), Tejas (fire) and Vayu (air) that have characteristic mass and other attributes, we re propounded. Akasa (space) was thought to have no atomic structure and was continuous and inert. Atoms combine to form different molecules (e.g. two atoms combine to form a diatomic molecule dvyanuka, three atoms form a tryanuka or a triatomic molecule), their properties depending upon the nature and ratio of the constituent atoms. The size of the atoms was also estimated, by conjecture or by methods that are not known to us. The estimates vary. In Lalitavistara, a famous biography of the Buddha written mainly in the second century B.C., the estimate is close to the modern estimate of atomic size, of the order of 10–10 m. In ancient Greece, Democritus (Fourth century B.C.) is best known for his atomic hypothesis. The word ‘atom’ means ‘indivisible’ in Greek. According to him, atoms differ from each other physically, in shape, size and other properties and this resulted in the different properties of the substances formed by their combination. The atoms of water were smooth and round and unable to ‘hook’ on to each other, which is why liquid /water flows easily. The atoms of earth were rough and jagged, so they held together to form hard substances. The atoms of fire were thorny which is why it caused painful burns. These fascinating ideas, despite their ingenuity, could not evolve much further, perhaps because they were intuitive conjectures and speculations not tested and modified by quantitative experiments–the hallmark of modern science.Q. Which of the followings was thought to have no atomic structure and was continuous and inert?

Attempt All sub parts from each question.Atomic Hypothesis in Ancient India and Greece Though John Dalton is credited with the introduction of atomic view point in modern science, scholars in ancient India and Greece conjectured long before the existence of atoms and molecules. In the Vaisheshika school of thought in India founded by Kanada (Sixth century B.C.) the atomic picture was developed in considerable detail. Atoms were thought to be eternal, indivisible, infinitesimal and ultimate parts of matter. It was argued that if matter could be subdivided without an end, there would be no difference between a mustard seed and the Meru mountain. The four kinds of atoms (Paramanu — Sanskrit word for the smallest particl e) postulated were Bhoomi (Earth), Ap (water), Tejas (fire) and Vayu (air) that have characteristic mass and other attributes, we re propounded. Akasa (space) was thought to have no atomic structure and was continuous and inert. Atoms combine to form different molecules (e.g. two atoms combine to form a diatomic molecule dvyanuka, three atoms form a tryanuka or a triatomic molecule), their properties depending upon the nature and ratio of the constituent atoms. The size of the atoms was also estimated, by conjecture or by methods that are not known to us. The estimates vary. In Lalitavistara, a famous biography of the Buddha written mainly in the second century B.C., the estimate is close to the modern estimate of atomic size, of the order of 10–10 m. In ancient Greece, Democritus (Fourth century B.C.) is best known for his atomic hypothesis. The word ‘atom’ means ‘indivisible’ in Greek. According to him, atoms differ from each other physically, in shape, size and other properties and this resulted in the different properties of the substances formed by their combination. The atoms of water were smooth and round and unable to ‘hook’ on to each other, which is why liquid /water flows easily. The atoms of earth were rough and jagged, so they held together to form hard substances. The atoms of fire were thorny which is why it caused painful burns. These fascinating ideas, despite their ingenuity, could not evolve much further, perhaps because they were intuitive conjectures and speculations not tested and modified by quantitative experiments–the hallmark of modern science.Q. In which biography the size of the atoms was estimated close to the modern estimate

Attempt All sub parts from each question.Atomic Hypothesis in Ancient India and Greece Though John Dalton is credited with the introduction of atomic view point in modern science, scholars in ancient India and Greece conjectured long before the existence of atoms and molecules. In the Vaisheshika school of thought in India founded by Kanada (Sixth century B.C.) the atomic picture was developed in considerable detail. Atoms were thought to be eternal, indivisible, infinitesimal and ultimate parts of matter. It was argued that if matter could be subdivided without an end, there would be no difference between a mustard seed and the Meru mountain. The four kinds of atoms (Paramanu — Sanskrit word for the smallest particl e) postulated were Bhoomi (Earth), Ap (water), Tejas (fire) and Vayu (air) that have characteristic mass and other attributes, we re propounded. Akasa (space) was thought to have no atomic structure and was continuous and inert. Atoms combine to form different molecules (e.g. two atoms combine to form a diatomic molecule dvyanuka, three atoms form a tryanuka or a triatomic molecule), their properties depending upon the nature and ratio of the constituent atoms. The size of the atoms was also estimated, by conjecture or by methods that are not known to us. The estimates vary. In Lalitavistara, a famous biography of the Buddha written mainly in the second century B.C., the estimate is close to the modern estimate of atomic size, of the order of 10–10 m. In ancient Greece, Democritus (Fourth century B.C.) is best known for his atomic hypothesis. The word ‘atom’ means ‘indivisible’ in Greek. According to him, atoms differ from each other physically, in shape, size and other properties and this resulted in the different properties of the substances formed by their combination. The atoms of water were smooth and round and unable to ‘hook’ on to each other, which is why liquid /water flows easily. The atoms of earth were rough and jagged, so they held together to form hard substances. The atoms of fire were thorny which is why it caused painful burns. These fascinating ideas, despite their ingenuity, could not evolve much further, perhaps because they were intuitive conjectures and speculations not tested and modified by quantitative experiments–the hallmark of modern science.Q. The kinds of atoms which were propounded in ancient India are

Top Courses for Class 11

If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ?
Question Description
If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ? for Class 11 2024 is part of Class 11 preparation. The Question and answers have been prepared according to the Class 11 exam syllabus. Information about If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ? covers all topics & solutions for Class 11 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ?.
Solutions for If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ? in English & in Hindi are available as part of our courses for Class 11. Download more important topics, notes, lectures and mock test series for Class 11 Exam by signing up for free.
Here you can find the meaning of If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ? defined & explained in the simplest way possible. Besides giving the explanation of If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ?, a detailed solution for If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ? has been provided alongside types of If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ? theory, EduRev gives you an ample number of questions to practice If sub atomic particles constitute an atom then why are atoms considered the basic unit of matter and the smallest units ? tests, examples and also practice Class 11 tests.
Explore Courses for Class 11 exam

Top Courses for Class 11

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev