GMAT Exam  >  GMAT Questions  >  A recent ball-catching experiment conducted i... Start Learning for Free
A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.
The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.
Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.
The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.
While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.
Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.
On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.
Q.
It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended to
  • a)
    move their arms higher than necessary
  • b)
    adjust their arms at the last possible second
  • c)
    use fewer arm movements than they would have on earth
  • d)
    keep their arms stationary for the two seconds preceding the catch
  • e)
    adjust their arms sooner than necessary
Correct answer is option 'E'. Can you explain this answer?
Verified Answer
A recent ball-catching experiment conducted in space by astronauts on ...
The passage states the following about the astronauts' arm movements: "While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch." The question asks for an inference about what was occurring BEFORE day 15, during the period when the astronauts were having trouble adjusting to the conditions in space. This inference should be provable from the passage.
(A) The passage does not discuss the height of the astronauts arm movements. While the passage mentions the amplitude, or abundance, of the premature arm movements, it never mentions the altitude, or height, of those movements.
(B) The astronauts arm movements tended to be premature, or too early, during the first two weeks of the experiment. This is the exact opposite of the inference in this answer choice – that the astronauts adjusted their arms at the latest possible time.
(C) Little can be inferred about the relative number of arm movements made by the astronauts in attempting to catch the ball. If anything, the fact that the astronauts tended to move their arms prematurely might suggest that they made a greater number of arm movements than they would have on earth.
(D) The passage mentions that by day 15 "a new well-timed arm movement immediately preceded the catch." One might infer that this new arm movement was absent during the previous two weeks. However, this does not mean that the astronauts' arms were stationary for a full two seconds immediately preceding the catch. No mention of specific time frames is ever made or hinted to in the passage.
(E) CORRECT. The astronauts moved their arms prematurely during the first two weeks of the experiment. This means that they adjusted their arms sooner than was necessary to catch the ball.
View all questions of this test
Explore Courses for GMAT exam

Similar GMAT Doubts

A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.Which of the foll owing, if tr ue, would s upport McIntyre’s theory that the brain has built-in knowledge of gravity?

A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.The primary purpose of the passage is to

A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.According to the passage, research suggests that the brain’s built-in understanding of gravity is

A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.The passage implies which of the following about gravity?

A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.The function of the final paragraph is to

A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended toa)move their arms higher than necessaryb)adjust their arms at the last possible secondc)use fewer arm movements than they would have on earthd)keep their arms stationary for the two seconds preceding the catche)adjust their arms sooner than necessaryCorrect answer is option 'E'. Can you explain this answer?
Question Description
A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended toa)move their arms higher than necessaryb)adjust their arms at the last possible secondc)use fewer arm movements than they would have on earthd)keep their arms stationary for the two seconds preceding the catche)adjust their arms sooner than necessaryCorrect answer is option 'E'. Can you explain this answer? for GMAT 2025 is part of GMAT preparation. The Question and answers have been prepared according to the GMAT exam syllabus. Information about A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended toa)move their arms higher than necessaryb)adjust their arms at the last possible secondc)use fewer arm movements than they would have on earthd)keep their arms stationary for the two seconds preceding the catche)adjust their arms sooner than necessaryCorrect answer is option 'E'. Can you explain this answer? covers all topics & solutions for GMAT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended toa)move their arms higher than necessaryb)adjust their arms at the last possible secondc)use fewer arm movements than they would have on earthd)keep their arms stationary for the two seconds preceding the catche)adjust their arms sooner than necessaryCorrect answer is option 'E'. Can you explain this answer?.
Solutions for A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended toa)move their arms higher than necessaryb)adjust their arms at the last possible secondc)use fewer arm movements than they would have on earthd)keep their arms stationary for the two seconds preceding the catche)adjust their arms sooner than necessaryCorrect answer is option 'E'. Can you explain this answer? in English & in Hindi are available as part of our courses for GMAT. Download more important topics, notes, lectures and mock test series for GMAT Exam by signing up for free.
Here you can find the meaning of A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended toa)move their arms higher than necessaryb)adjust their arms at the last possible secondc)use fewer arm movements than they would have on earthd)keep their arms stationary for the two seconds preceding the catche)adjust their arms sooner than necessaryCorrect answer is option 'E'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended toa)move their arms higher than necessaryb)adjust their arms at the last possible secondc)use fewer arm movements than they would have on earthd)keep their arms stationary for the two seconds preceding the catche)adjust their arms sooner than necessaryCorrect answer is option 'E'. Can you explain this answer?, a detailed solution for A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended toa)move their arms higher than necessaryb)adjust their arms at the last possible secondc)use fewer arm movements than they would have on earthd)keep their arms stationary for the two seconds preceding the catche)adjust their arms sooner than necessaryCorrect answer is option 'E'. Can you explain this answer? has been provided alongside types of A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended toa)move their arms higher than necessaryb)adjust their arms at the last possible secondc)use fewer arm movements than they would have on earthd)keep their arms stationary for the two seconds preceding the catche)adjust their arms sooner than necessaryCorrect answer is option 'E'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice A recent ball-catching experiment conducted in space by astronauts on board a space shuttle has led neuroscientists to conclude that the brain contains an internal model of gravity that is both powerful and persistent. At the same time, the experiment provided evidence that the brain can adapt to environments in which the force of downward acceleration is less pronounced than it is on earth.The experiment’s outcomes suggested that an individual’s understanding of motion is hard-wired from an earthcentric perspective. In the experiment, the astronauts were asked to catch balls released from a spring-loaded cannon.Analyzing data gathered from infrared tracking cameras and electrodes placed on the astronauts’ arms, McIntyre, the experiment’s principal designer, noticed that the astronauts’ anticipation of the ball’s motion was slightly off. Though they were able to catch the ball, the astronauts expected the ball to move faster than it did. He theorized that this over-anticipation is due to the fact that the brain expects the force of the earth’s gravity to act on the ball.The experiment also demonstrates the brain’s ability to adjust to conditions that run counter to its pre-set wiring.While the astronauts did not adapt to the conditions in space for some time, by day 15 of the experiment, the amplitude of the premature arm movements decreased and a new well-timed arm movement immediately preceded the catch. Upon returning to earth, the astronauts again mis-anticipated the ball’s motion, though this time the ball moved faster than anticipated. However, the astronauts were able to adjust back to the earth’s gravitational effect on the balls much more quickly than they had been able to adapt to the conditions in space.Many scientists view the findings as a first step in research that could have serious practical benefits. The ability of astronauts to safely explore space and investigate other planets is dependent on understanding the differences between our physical reactions on earth and elsewhere.On another level, understanding timing processes in the body might lead to the development of treatments for coordination problems experienced by individuals with certain types of brain damage.Q.It can be inferred from the passage that during the first two weeks of the experiment the astronauts, in attempting to catch the ball, tended toa)move their arms higher than necessaryb)adjust their arms at the last possible secondc)use fewer arm movements than they would have on earthd)keep their arms stationary for the two seconds preceding the catche)adjust their arms sooner than necessaryCorrect answer is option 'E'. Can you explain this answer? tests, examples and also practice GMAT tests.
Explore Courses for GMAT exam
Signup to solve all Doubts
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev