Class 12 Exam  >  Class 12 Questions  >  In an electrical circuit R, L, C and an a.c. ... Start Learning for Free
In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]
  • a)
    1/2
  • b)
    1/√2
  • c)
    1
  • d)
    √3/2
Correct answer is option 'C'. Can you explain this answer?
Verified Answer
In an electrical circuit R, L, C and an a.c. voltage source are all co...
when C is remove from the circuit
View all questions of this test
Most Upvoted Answer
In an electrical circuit R, L, C and an a.c. voltage source are all co...
When L is removed from the circuit, the phase difference between the voltage and the current in the circuit will depend on the values of R and C.

If the circuit consists only of R and C, it is a simple RC circuit. In this case, the phase difference between the voltage and the current will be 0 degrees (in phase) or 180 degrees (out of phase), depending on the values of R and C. If the time constant RC is large (compared to the period of the AC voltage source), the phase difference will be close to 0 degrees. If the time constant RC is small, the phase difference will be close to 180 degrees.

If the circuit consists of R, L, and C, it is a series RLC circuit. In this case, the phase difference between the voltage and the current will depend on the frequency of the AC voltage source and the values of R, L, and C. The phase difference can be calculated using the impedance triangle or by solving the differential equations for the circuit.

In summary, the phase difference between the voltage and the current in the circuit depends on the circuit components (R, L, and C) and the frequency of the AC voltage source.
Explore Courses for Class 12 exam

Similar Class 12 Doubts

Read the following text and answer the following questions on the basis of the same:Shunt resistance: The ammeter shunt is the device which provides the low resistance path to the flow of current. It is connected in parallel with the ammeter. In some ammeter the shunt is in-built inside the instrument while in others it is externally connected to the circuit. Ammeters are designed for measurement of low current. For measuring high current, the shunt is connected in parallel to the ammeter. The significant portion of the current passes to the shunt because of the low resistance path and little amount of current passes through the ammeter. The shunt is connected in parallel to the ammeter because of which the voltage drops across the meter and shunt remain the same. Thus, the movement of the pointer is not affected by the shunt. Let us consider that the current to be measured is I. The circuit has ammeter and shunt connected parallel to each other. The ammeter is designed for measurement of small current say, Im. The magnitude of the current I passes through the meter is very high, and it will burn the meter. So, for measuring the current I the shunt is required in the circuit. As the shunt connects in parallel with the ammeter, thus the same voltage drops occur between them:IShRSH = ImRm∴ RSH = ImRm/ISHShunt current ISH = I – ImSo, RSH = ImRm/(I – Im)∴ I/Im = 1 + (Rm/RSH)The ratio of the total current to the current required for the movement of the ammeter coil is called the multiplying power of the shunt.∴ The multiplying power = m = I/ImRSH = Rm / (m – 1)The following are the requirements of the shunt.• The resistance of the shunt should remain constant with time.• The temperature of the material should remain the same even though substantial current flows through the circuit.How shunt is connected with a ammeter?

Read the following text and answer the following questions on the basis of the same: Spark coil The principle of electromagnetic induction was discovered by Michael Faraday in 1831. Induction coils were used widely in electrical experiments and for medical therapy during the last half of the 19th century, eventually leading to the development of radio in the 1890's. The spark coil designed on the principle of electromagnetic induction was the heart of the earliest radio transmitters. Marconi used a spark coil designed by Heinrich Rhumkorff in his early experiments. An induction coil or "spark coil" is a type of electrical transformer used to produce high-voltage pulses from a low-voltage (DC) supply. To create the flux changes necessary to induce voltage in the secondary coil, the direct current in the primary coil is repeatedly interrupted by a vibrating mechanical contact called interrupter.The spark scoil consists of two coils of insulated wire wound around a common iron core. One coil, called the primary coil, is made from relatively few (tens or hundreds) turns of coarse wire. The other coil, the secondary coil typically consists of up to a million turns of fine wire (up to 40 gaug e). An electric current is passed through the primary, creating a magnetic field. Because of the common core, most of the primary's flux couples with the secondary. When the primary current is suddenly interrupted, the magnetic field rapidly collapses. This causes a high voltage pulse to be developed across the secondary terminals due to electromagnetic induction. Because of the large number of turns in the secondary coil, the secondary voltage pulse is typically many thousands of volts. This voltage is sufficient to create an electric spark, to jump across an air gap separating the secondary's output terminals. For this reason, this induction coils are also called spark coils. To operate the coil continually, the DC supply current must be repeatedly connected and disconnected. To do that, a magnetically activated vibrating arm called an interrupter is used which rapidly connects and breaks the current flowing into the primary coil. The interrupter is mounted on the end of the coil next to the iron core. When the power is turned on, the produced magnetic field attracts the armature. When the armature has moved far enough, contacts in the primary circuit breaks and disconnects the primary current. Disconnecting the current causes the magnetic field to collapse and create the spark. A short time later the contacts reconnect, and the process repeats. An arc which may form at the interrupter contacts is undesirable. To prevent this, a capacitor of 0.5 to 15 μF is connected across the primary coil.Why most of the primary's flux couples with the secondary in spark coil?

Read the following text and answer the following questions on the basis of the same: Spark coil The principle of electromagnetic induction was discovered by Michael Faraday in 1831. Induction coils were used widely in electrical experiments and for medical therapy during the last half of the 19th century, eventually leading to the development of radio in the 1890's. The spark coil designed on the principle of electromagnetic induction was the heart of the earliest radio transmitters. Marconi used a spark coil designed by Heinrich Rhumkorff in his early experiments. An induction coil or "spark coil" is a type of electrical transformer used to produce high-voltage pulses from a low-voltage (DC) supply. To create the flux changes necessary to induce voltage in the secondary coil, the direct current in the primary coil is repeatedly interrupted by a vibrating mechanical contact called interrupter.The spark scoil consists of two coils of insulated wire wound around a common iron core. One coil, called the primary coil, is made from relatively few (tens or hundreds) turns of coarse wire. The other coil, the secondary coil typically consists of up to a million turns of fine wire (up to 40 gaug e). An electric current is passed through the primary, creating a magnetic field. Because of the common core, most of the primary's flux couples with the secondary. When the primary current is suddenly interrupted, the magnetic field rapidly collapses. This causes a high voltage pulse to be developed across the secondary terminals due to electromagnetic induction. Because of the large number of turns in the secondary coil, the secondary voltage pulse is typically many thousands of volts. This voltage is sufficient to create an electric spark, to jump across an air gap separating the secondary's output terminals. For this reason, this induction coils are also called spark coils. To operate the coil continually, the DC supply current must be repeatedly connected and disconnected. To do that, a magnetically activated vibrating arm called an interrupter is used which rapidly connects and breaks the current flowing into the primary coil. The interrupter is mounted on the end of the coil next to the iron core. When the power is turned on, the produced magnetic field attracts the armature. When the armature has moved far enough, contacts in the primary circuit breaks and disconnects the primary current. Disconnecting the current causes the magnetic field to collapse and create the spark. A short time later the contacts reconnect, and the process repeats. An arc which may form at the interrupter contacts is undesirable. To prevent this, a capacitor of 0.5 to 15 μF is connected across the primary coil.What is the function of interrupter in a spark coil?

In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]a)1/2b)1/√2c)1d)√3/2Correct answer is option 'C'. Can you explain this answer?
Question Description
In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]a)1/2b)1/√2c)1d)√3/2Correct answer is option 'C'. Can you explain this answer? for Class 12 2024 is part of Class 12 preparation. The Question and answers have been prepared according to the Class 12 exam syllabus. Information about In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]a)1/2b)1/√2c)1d)√3/2Correct answer is option 'C'. Can you explain this answer? covers all topics & solutions for Class 12 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]a)1/2b)1/√2c)1d)√3/2Correct answer is option 'C'. Can you explain this answer?.
Solutions for In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]a)1/2b)1/√2c)1d)√3/2Correct answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for Class 12. Download more important topics, notes, lectures and mock test series for Class 12 Exam by signing up for free.
Here you can find the meaning of In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]a)1/2b)1/√2c)1d)√3/2Correct answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]a)1/2b)1/√2c)1d)√3/2Correct answer is option 'C'. Can you explain this answer?, a detailed solution for In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]a)1/2b)1/√2c)1d)√3/2Correct answer is option 'C'. Can you explain this answer? has been provided alongside types of In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]a)1/2b)1/√2c)1d)√3/2Correct answer is option 'C'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice In an electrical circuit R, L, C and an a.c. voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage the current in the circuit is π/3. If instead, C is removed from the circuit, the phase difference is again π/3. The power factor of the circuit is : [2012]a)1/2b)1/√2c)1d)√3/2Correct answer is option 'C'. Can you explain this answer? tests, examples and also practice Class 12 tests.
Explore Courses for Class 12 exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev