Integration of (cos5x cos4x)/(1-2cos3x)?
(Cos5x Cos4x) /( 2(1- 2 Cos3x) )
=(2Cos5xCos4x)/(2(1-2Cos3x))
=[ Cos(5x+4x)+ Cos(5x-4x)]/(2(1-2Cos3x)),(since, cos(A+B) + cos(A- B)= 2CosACosB)
=(Cos9x + Cosx)/(2(1-2Cos3x))
= (Cos 5x + Cos4x)/(2(1-2Cos3x))
= (2Cos(9x/2)Cos(x/2))/(2(1-2Cos3x))
=(2Cos(9x/2)Cos(x/2))/(2(1-2(2(Cos3x/2))^2 - 1)), [since, Cos2x = 2(Cosx)^2 - 1]
=(2Cos(9x/2)Cos(x/2))/(2(1-4(Cos3x/2)^2 + 2))
= (2Cos(9x/2)Cos(x/2))/(2(3-4(Cos3x/2)^2))
multiplying by Cos3x/2 in the numerator and denominator:-
(2Cos(9x/2)Cos(x/2)Cos(3x/2))/(2(3Cos(3x/2)-4(Cos3x/2)^3)
= (Cos(9x/2)Cos(x/2)Cos(3x/2))/(3Cos(3x/2) - 4( Cos(3x/2))^3)
=(Cos(9x/2)Cos(x/2)Cos(3x/2))/(-Cos(9x/2)),[since, Cos3x = 4(cosx)^3 - 3 cosx]
=(-Cos(x/2)Cos(3x/2))
= (-1/2)(2Cos(3x/2)Cos(x/2))
=(-1/2)(Cos2x + Cosx)
Now ,on the integrating:-
(-1/2)(((Sin2x)/2) + sinx)answer
Integration of (cos5x cos4x)/(1-2cos3x)?
Integration of (cos5x cos4x)/(1-2cos3x)
To integrate the given expression, we can use the trigonometric identity:
cos A cos B = 1/2 [cos(A + B) + cos(A - B)]
Let's break down the expression and simplify it using this identity.
1. Simplifying the numerator:
cos5x cos4x = 1/2 [cos(5x + 4x) + cos(5x - 4x)]
= 1/2 [cos(9x) + cos(x)]
2. Simplifying the denominator:
1 - 2cos3x
3. Rewriting the expression:
(cos5x cos4x)/(1 - 2cos3x) = [1/2 (cos(9x) + cos(x))]/(1 - 2cos3x)
Now, let's proceed with the integration using a substitution method.
4. Substitute u = cos(x):
To simplify the integration, we will substitute u = cos(x). Therefore, du = -sin(x) dx.
5. Rewriting the expression with the substitution:
[1/2 (cos(9x) + cos(x))]/(1 - 2cos3x) = [1/2 (cos(9x) + u)]/(1 - 2u^3) du
6. Integrating the expression:
∫ [1/2 (cos(9x) + u)]/(1 - 2u^3) du
7. Partial fraction decomposition:
To integrate this expression, we need to decompose it into partial fractions.
Let's assume the decomposition as:
[1/2 (cos(9x) + u)]/(1 - 2u^3) = A/(1 - 2u) + B/(1 + u + u^2)
8. Find the values of A and B:
Multiply both sides by the denominator (1 - 2u)(1 + u + u^2) to get rid of the fractions.
1/2 (cos(9x) + u) = A(1 + u + u^2) + B(1 - 2u)
Comparing the coefficients of u^2, u, and constant terms, we can solve for A and B.
9. Perform the partial fraction decomposition:
Once we have the values of A and B, we can rewrite the expression using the partial fraction decomposition.
10. Integrating the partial fractions:
Now, we can integrate the partial fractions separately.
11. Substitute back the value of u:
After integrating, substitute back u = cos(x) to obtain the final result.
12. Write the final result:
The final result will be in terms of x after substituting back the value of u.
By following these steps, you can integrate the given expression.