Four equal discs are placed such that each one touches two others. If ...
Let the radius of each disc be $r$. We can draw a diagram as shown:
[asy] unitsize(1cm); pair A,B,C,D,E,F; A=(0,0); B=(2,0); C=(1,sqrt(3)); D=(1,0); E=(D+C)/2; F=(D+B)/2; draw(Circle(A,1)); draw(Circle(B,1)); draw(Circle(C,1)); label("$r$",(A--D),S); label("$r$",(B--D),S); label("$r$",(C--D),N); label("$r$",(C--E),NW); label("$r$",(B--F),NE); label("$r$",(A--D),S); label("$r$",(B--D),S); label("$r$",(C--D),N); label("$r$",(C--E),NW); label("$r$",(B--F),NE); [/asy]
The area enclosed by the discs is equal to the area of an equilateral triangle with side length $2r$ minus the area of three sectors of the circles with radius $r$ and central angles $120^\circ$. The area of the equilateral triangle is $\frac{\sqrt{3}}{4}(2r)^2=\frac{3\sqrt{3}}{2}r^2$, and the area of each sector is $\frac{120}{360}\pi r^2=\frac{1}{3}\pi r^2$. Therefore, the area enclosed by the discs is $\frac{3\sqrt{3}}{2}r^2-3\cdot\frac{1}{3}\pi r^2=\left(\frac{3\sqrt{3}}{2}-\pi\right)r^2$. We are given that this area is $\frac{150}{847}$, so we have the equation $\left(\frac{3\sqrt{3}}{2}-\pi\right)r^2=\frac{150}{847}$. Solving for $r$ gives $r^2=\frac{\frac{150}{847}}{\frac{3\sqrt{3}}{2}-\pi}=\frac{150}{847}\cdot\frac{2}{\frac{6\sqrt{3}}{2}-2\pi}=\frac{300}{847\left(\sqrt{3}-\pi\right)}$. Multiplying both the numerator and denominator of the fraction by the conjugate of the denominator gives $r^2=\frac{300\left(\sqrt{3}+\pi\right)}{2519-847\pi}$. We are asked to find $r$, so we take the square root of both sides. Since $r$ must be positive, we take the positive square root: $r=\sqrt{\frac{300\left(\sqrt{3}+\pi\right)}{2519-847\pi}}=\boxed{\textbf{(D)}\ \sqrt{\frac{300\left(\sqrt{3}+\pi\right)}{2519-847\pi}}}$.