If integration ln ex^x 1 (ln(x^√x))^2 dx /(1 xlnx)lne^2 x^x = f(x) c ...
Integration of ln(ex^x(1+(ln(x^√x))^2) dx/(1+xlnx)ln(e^2x^x) = f(x) + C
Step 1: Simplifying the integral
To simplify the integral, we can use the following properties of logarithms:
- ln(ab) = ln(a) + ln(b)
- ln(a/b) = ln(a) - ln(b)
- ln(a^b) = b ln(a)
Using these properties, we can simplify the integral as follows:
ln(ex^x(1+(ln(x^√x))^2) dx/(1+xlnx)ln(e^2x^x)
= ln(e) + ln(ex^x) + ln(1+(ln(x^√x))^2) - ln(1+xlnx) - ln(e^2x^x)
= x + ln(1+(ln(x^√x))^2) - ln(1+xlnx) - 2x^x
Step 2: Finding f(x)
To find f(x), we need to integrate the simplified expression:
f(x) = ∫(x + ln(1+(ln(x^√x))^2) - ln(1+xlnx) - 2x^x) dx
f(x) = ½ x^2 + x ln(1+(ln(x^√x))^2) - ∫ln(1+xlnx) dx - (2/ln(e^2))
Using integration by parts, we can find the integral of ln(1+xlnx) as follows:
Let u = ln(1+xlnx) and dv = dx
Then du/dx = 1/(1+xlnx) + (lnx)/sqrt(x)
And v = x - (1/2) ln(1+xlnx)
Using the formula for integration by parts, we get:
∫ln(1+xlnx) dx = x ln(1+xlnx) - ∫[(x/sqrt(x)) + (1/2)(1/(1+xlnx))] dx
= x ln(1+xlnx) - ½ x^2 - ½ ln(1+xlnx) + ∫(1/(2(1+xlnx))) dx
= x ln(1+xlnx) - ½ x^2 - ½ ln(1+xlnx) + (1/2) ln(1+xlnx) - (1/2) ln(ln(e^2))
= x ln(1+xlnx) - ½ x^2
Substituting this back into the expression for f(x), we get:
f(x) = ½ x^2 + x ln(1+(ln(x^√x))^2) - x ln(1+xlnx) + ½ x^2 + (2/ln(e^2))
= x ln((1+(ln(x^√x))^2)/(1+xlnx)) + (2/ln(e^2))
Step 3: Finding e^(e^f(2) -1)
To find e^(e^f(2) -1), we need