JEE Exam  >  JEE Questions  >  Let a, b, c be non-zero real numbers such tha... Start Learning for Free
Let a, b, c be non-zero real numbers such that
Then the quadratic equation ax2 + bx +c= 0 has
  • a)
    no root in (0, 2)
  • b)
    at least one root in (0, 2)
  • c)
    a double root in (0, 2)
  • d)
    two imaginary roots
Correct answer is option 'B'. Can you explain this answer?
Verified Answer
Let a, b, c be non-zero real numbers such thatThen the quadratic equat...


Now we know that if  then it means that
f (x) is + ve on some part of (α, β) and – ve on other part of (α, β).
But here 1 + cos8 x is always + ve,
∴ ax2 + bx + c is + ve on some part of [1 , 2] and – ve on other part [1, 2]
∴ ax2 + bx + c= 0 has at least one root in (1, 2).
⇒ ax2 + bx + c = 0 has at least one root in (0,2).
View all questions of this test
Explore Courses for JEE exam
Let a, b, c be non-zero real numbers such thatThen the quadratic equation ax2 + bx +c= 0 hasa)no root in (0, 2)b)at least one root in (0, 2)c)a double root in (0, 2)d)two imaginary rootsCorrect answer is option 'B'. Can you explain this answer?
Question Description
Let a, b, c be non-zero real numbers such thatThen the quadratic equation ax2 + bx +c= 0 hasa)no root in (0, 2)b)at least one root in (0, 2)c)a double root in (0, 2)d)two imaginary rootsCorrect answer is option 'B'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about Let a, b, c be non-zero real numbers such thatThen the quadratic equation ax2 + bx +c= 0 hasa)no root in (0, 2)b)at least one root in (0, 2)c)a double root in (0, 2)d)two imaginary rootsCorrect answer is option 'B'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Let a, b, c be non-zero real numbers such thatThen the quadratic equation ax2 + bx +c= 0 hasa)no root in (0, 2)b)at least one root in (0, 2)c)a double root in (0, 2)d)two imaginary rootsCorrect answer is option 'B'. Can you explain this answer?.
Solutions for Let a, b, c be non-zero real numbers such thatThen the quadratic equation ax2 + bx +c= 0 hasa)no root in (0, 2)b)at least one root in (0, 2)c)a double root in (0, 2)d)two imaginary rootsCorrect answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of Let a, b, c be non-zero real numbers such thatThen the quadratic equation ax2 + bx +c= 0 hasa)no root in (0, 2)b)at least one root in (0, 2)c)a double root in (0, 2)d)two imaginary rootsCorrect answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Let a, b, c be non-zero real numbers such thatThen the quadratic equation ax2 + bx +c= 0 hasa)no root in (0, 2)b)at least one root in (0, 2)c)a double root in (0, 2)d)two imaginary rootsCorrect answer is option 'B'. Can you explain this answer?, a detailed solution for Let a, b, c be non-zero real numbers such thatThen the quadratic equation ax2 + bx +c= 0 hasa)no root in (0, 2)b)at least one root in (0, 2)c)a double root in (0, 2)d)two imaginary rootsCorrect answer is option 'B'. Can you explain this answer? has been provided alongside types of Let a, b, c be non-zero real numbers such thatThen the quadratic equation ax2 + bx +c= 0 hasa)no root in (0, 2)b)at least one root in (0, 2)c)a double root in (0, 2)d)two imaginary rootsCorrect answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Let a, b, c be non-zero real numbers such thatThen the quadratic equation ax2 + bx +c= 0 hasa)no root in (0, 2)b)at least one root in (0, 2)c)a double root in (0, 2)d)two imaginary rootsCorrect answer is option 'B'. Can you explain this answer? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev