JEE Exam  >  JEE Questions  >  A charged particle with velocity 2 x 103 m/s ... Start Learning for Free
A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would be
  • a)
    2x 103 N/C
  • b)
    1.5 x103 N/C
  • c)
    3 x 103 N/C
  • d)
    4/3 x 10⁻3N/C
Correct answer is option 'C'. Can you explain this answer?
Most Upvoted Answer
A charged particle with velocity 2 x 103 m/s passes undeflected throug...
Given:
Velocity of the charged particle = 2 x 10^3 m/s
Magnetic field = 1.5 Tesla

To find:
Electric field intensity

Explanation:
When a charged particle moves through a magnetic field, it experiences a force called the magnetic force given by the equation:

F = qvBsinθ

Where,
F is the magnetic force,
q is the charge of the particle,
v is the velocity of the particle,
B is the magnetic field, and
θ is the angle between the velocity vector and the magnetic field vector.

In this case, the charged particle passes undeflected through the magnetic field, which means the magnetic force acting on it is zero. Therefore, the angle between the velocity vector and the magnetic field vector is 0 degrees.

sinθ = 0
θ = 0 degrees

Substituting the values in the equation for the magnetic force:

F = qvBsinθ
F = qvB(0)
F = 0

Since the magnetic force is zero, the electric field must balance out this force and keep the particle undeflected. The electric force is given by the equation:

F = qE

Where,
F is the electric force,
q is the charge of the particle, and
E is the electric field intensity.

Since the electric force is equal to zero, we can say:

F = qE
0 = qE

Therefore, the electric field intensity, E, must also be zero.

However, none of the given options match the correct answer. Therefore, there may be an error in the question or possible answers provided.
Free Test
Community Answer
A charged particle with velocity 2 x 103 m/s passes undeflected throug...
E/B=v
E=B×V
E=3×10^3
Explore Courses for JEE exam

Similar JEE Doubts

The French physicist Louis de-Broglie in 1924 postulated that matter, like radiation, should exhibit a dual behaviour. He proposed the following relationship between the wavelength of a material particle, its linear momentum p and planck constant h.The de Broglie relation implies that the wavelength of a particle should decreases as its velocity increases. It also implies that for a given velocity heavier particles should have shorter wavelength than lighter particles. The waves associated with particles in motion are called matter waves or de Broglie waves.These waves differ from the electromagnetic waves as they,(i) have lower velocities(ii) have no electrical and magnetic fields and(iii) are not emitted by the particle under consideration.The experimental confirmation of the deBroglie relation was obtained when Davisson and Germer, in 1927, observed that a beam of electrons is diffracted by a nickel crystal. As diffraction is a characteristic property of waves, hence the beam of electron behaves as a wave, as proposed by deBroglie.Werner Heisenberg considered the limits of how precisely we can measure properties of an electron or other microscopic particle like electron. He determined that there is a fundamental limit of how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse is also ture. This is summed up in what we now call the Heisenberg uncertainty principle : It is impossible to determine simultaneously and precisely both the momentum and position of a particle. The product of undertainty in the position, x and the uncertainity in the momentum (mv) must be greater than or equal to h/4. i.e.Q. The transition, so that the de - Broglie wavelength of electron becomes 3 times of its initial value in He+ ion will be

Can you explain the answer of this question below:The French physicist Louis de-Broglie in 1924 postulated that matter, like radiation, should exhibit a dual behaviour. He proposed the following relationship between the wavelength of a material particle, its linear momentum p and planck constant h.The de Broglie relation implies that the wavelength of a particle should decreases as its velocity increases. It also implies that for a given velocity heavier particles should have shorter wavelength than lighter particles. The waves associated with particles in motion are called matter waves or de Broglie waves.These waves differ from the electromagnetic waves as they,(i) have lower velocities(ii) have no electrical and magnetic fields and(iii) are not emitted by the particle under consideration.The experimental confirmation of the deBroglie relation was obtained when Davisson and Germer, in 1927, observed that a beam of electrons is diffracted by a nickel crystal. As diffraction is a characteristic property of waves, hence the beam of electron behaves as a wave, as proposed by deBroglie.Werner Heisenberg considered the limits of how precisely we can measure properties of an electron or other microscopic particle like electron. He determined that there is a fundamental limit of how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse is also ture. This is summed up in what we now call the Heisenberg uncertainty principle : It is impossible to determine simultaneously and precisely both the momentum and position of a particle. The product of undertainty in the position, x and the uncertainity in the momentum (mv) must be greater than or equal to h/4. i.e.Q.The correct order of wavelength of Hydrogen (1H1), Deuterium (1H2) and Tritium (1H3) moving with same kinetic energy is :A:H D TB:H = D = TC:H D TD:H D TThe answer is a.

The French physicist Louis de-Broglie in 1924 postulated that matter, like radiation, should exhibit a dual behaviour. He proposed the following relationship between the wavelength of a material particle, its linear momentum p and planck constant h.The de Broglie relation implies that the wavelength of a particle should decreases as its velocity increases. It also implies that for a given velocity heavier particles should have shorter wavelength than lighter particles. The waves associated with particles in motion are called matter waves or de Broglie waves.These waves differ from the electromagnetic waves as they,(i) have lower velocities(ii) have no electrical and magnetic fields and(iii) are not emitted by the particle under consideration.The experimental confirmation of the deBroglie relation was obtained when Davisson and Germer, in 1927, observed that a beam of electrons is diffracted by a nickel crystal. As diffraction is a characteristic property of waves, hence the beam of electron behaves as a wave, as proposed by deBroglie.Werner Heisenberg considered the limits of how precisely we can measure properties of an electron or other microscopic particle like electron. He determined that there is a fundamental limit of how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse is also ture. This is summed up in what we now call the Heisenberg uncertainty principle : It is impossible to determine simultaneously and precisely both the momentum and position of a particle. The product of undertainty in the position, x and the uncertainity in the momentum (mv) must be greater than or equal to h/4. i.e.Q. If the uncertainty in velocity position is same, then the uncertainty in momentum will be

A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would bea)2x 103 N/Cb)1.5 x103 N/Cc)3 x 103 N/Cd)4/3 x 103N/CCorrect answer is option 'C'. Can you explain this answer?
Question Description
A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would bea)2x 103 N/Cb)1.5 x103 N/Cc)3 x 103 N/Cd)4/3 x 103N/CCorrect answer is option 'C'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would bea)2x 103 N/Cb)1.5 x103 N/Cc)3 x 103 N/Cd)4/3 x 103N/CCorrect answer is option 'C'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would bea)2x 103 N/Cb)1.5 x103 N/Cc)3 x 103 N/Cd)4/3 x 103N/CCorrect answer is option 'C'. Can you explain this answer?.
Solutions for A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would bea)2x 103 N/Cb)1.5 x103 N/Cc)3 x 103 N/Cd)4/3 x 103N/CCorrect answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would bea)2x 103 N/Cb)1.5 x103 N/Cc)3 x 103 N/Cd)4/3 x 103N/CCorrect answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would bea)2x 103 N/Cb)1.5 x103 N/Cc)3 x 103 N/Cd)4/3 x 103N/CCorrect answer is option 'C'. Can you explain this answer?, a detailed solution for A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would bea)2x 103 N/Cb)1.5 x103 N/Cc)3 x 103 N/Cd)4/3 x 103N/CCorrect answer is option 'C'. Can you explain this answer? has been provided alongside types of A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would bea)2x 103 N/Cb)1.5 x103 N/Cc)3 x 103 N/Cd)4/3 x 103N/CCorrect answer is option 'C'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice A charged particle with velocity 2 x 103 m/s passes undeflected through electric and magnetic field. Magnetic field is 1.5 telsa. The electric field intensity would bea)2x 103 N/Cb)1.5 x103 N/Cc)3 x 103 N/Cd)4/3 x 103N/CCorrect answer is option 'C'. Can you explain this answer? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev