Sin 3x sin 2x - sin x = 4sin x cos x/2 cos 3x/2?
Given Equation:
sin 3x - sin 2x - sin x = 4sin x cos x/2 cos 3x/2
Trigonometric Identities:
Before solving the equation, let's recall some important trigonometric identities that will be used in the process:
1. sin(A + B) = sin A cos B + cos A sin B
2. sin(A - B) = sin A cos B - cos A sin B
3. sin(2A) = 2sin A cos A
4. sin(3A) = 3sin A - 4sin^3 A
Solution:
Step 1: Simplify both sides of the equation using the trigonometric identities mentioned above.
sin 3x - sin 2x - sin x = 4sin x cos x/2 cos 3x/2
Using identity 3, we can rewrite sin 2x as 2sin x cos x:
sin 3x - 2sin x cos x - sin x = 4sin x cos x/2 cos 3x/2
Now, let's simplify the right side of the equation:
4sin x cos x/2 cos 3x/2
Using identity 2, we can rewrite cos 3x/2 as cos x/2:
4sin x cos x/2 cos 3x/2 = 4sin x cos x/2 cos x/2
Step 2: Further simplify both sides of the equation.
We can simplify the left side of the equation by expanding sin 3x using identity 4:
3sin x - 4sin^3 x - 2sin x cos x - sin x = 4sin x cos x/2 cos x/2
Combining like terms, we have:
-4sin^3 x + 2sin x - 2sin x cos x = 4sin x cos x/2 cos x/2
Step 3: Rearrange the equation to isolate the trigonometric functions.
Rearranging the equation, we get:
-4sin^3 x - 2sin x cos x + 2sin x - 4sin x cos x/2 cos x/2 = 0
Step 4: Factor out common terms.
Factoring out sin x, we have:
sin x(-4sin^2 x - 2cos x + 2 - 4cos x/2 cos x/2) = 0
Step 5: Solve for sin x.
Setting each factor equal to zero, we have two possible solutions:
sin x = 0
or
-4sin^2 x - 2cos x + 2 - 4cos x/2 cos x/2 = 0
Step 6: Solve for sin x using the quadratic equation.
To solve the quadratic equation, we can use the quadratic formula:
sin x = (-b ± √(b^2 - 4ac)) / (2a)
In the given equation, a = -4, b = -2, and c = 2 - 4cos x/2 cos x/2.
Substituting the values
To make sure you are not studying endlessly, EduRev has designed Class 11 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 11.