Solve x sq. 1/x sq if x at -1?
**Solving x^2 / (1/x)^2 when x is -1**
To solve the given expression x^2 / (1/x)^2 when x is -1, we can substitute -1 for x and simplify the expression.
Let's start by substituting -1 for x in the expression:
(-1)^2 / (1/(-1))^2
Now, let's simplify the expression step by step:
**Simplifying the numerator:**
(-1)^2 is equal to 1, since any number raised to the power of 2 is positive. Therefore, the numerator simplifies to 1.
**Simplifying the denominator:**
To simplify the denominator, we need to evaluate (1/(-1))^2.
First, let's evaluate 1/(-1):
1/(-1) is equal to -1, since dividing 1 by -1 results in -1.
Now, let's square -1:
(-1)^2 is equal to 1, since any number squared is positive.
Therefore, the denominator simplifies to 1.
**Simplifying the expression:**
Now that we have simplified the numerator and denominator, we can rewrite the expression:
1/1
And since any number divided by 1 is equal to that number, the expression simplifies to:
1
Therefore, when x is -1, the expression x^2 / (1/x)^2 simplifies to 1.
In summary,
x^2 / (1/x)^2 = 1 when x is -1.
To make sure you are not studying endlessly, EduRev has designed Class 8 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 8.