Question Description
Both the Cβ–H and Cα–X bonds are breaking in the transition state of E2 reactions. The rate of E2 reaction is of second order. The rate shows primary isotopic (deuterium) effect, i.e. if Cβ–H is replaced by Cβ–D, the rate of reaction decreases sharply. The rate is also corelated with nucleofugality i.e. the ability of leaving group to leave. With a better nucleofuge, the rate of reaction increases. This is called the element effect.The element effect is also observed in E1cB reactions in which the second step is rate determining and elimination of first order w.r.t. conjugate base is observed. For E1cB reaction KH/KD ~ 1, therefore proton abstraction is not involved in the rate determing step. In D2O the incorporation of Deuterium at Cβ–H in the substrate is found many times faster than rate of elimination, in E1cB reaction.In E1 reaction only nucleofuge departs in slow step and a carbocation intermediate is formed.Q.For the given compounds I and II the rate of elimination byWhat is true about this reactiona)Both Cβ – H and Cα – Br bonds are breaking simultaneously in transition state.b)Only is eliminated in rate determining step.c)d)The reaction intermediate is resonance stabilizedCorrect answer is option 'A'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared
according to
the JEE exam syllabus. Information about Both the Cβ–H and Cα–X bonds are breaking in the transition state of E2 reactions. The rate of E2 reaction is of second order. The rate shows primary isotopic (deuterium) effect, i.e. if Cβ–H is replaced by Cβ–D, the rate of reaction decreases sharply. The rate is also corelated with nucleofugality i.e. the ability of leaving group to leave. With a better nucleofuge, the rate of reaction increases. This is called the element effect.The element effect is also observed in E1cB reactions in which the second step is rate determining and elimination of first order w.r.t. conjugate base is observed. For E1cB reaction KH/KD ~ 1, therefore proton abstraction is not involved in the rate determing step. In D2O the incorporation of Deuterium at Cβ–H in the substrate is found many times faster than rate of elimination, in E1cB reaction.In E1 reaction only nucleofuge departs in slow step and a carbocation intermediate is formed.Q.For the given compounds I and II the rate of elimination byWhat is true about this reactiona)Both Cβ – H and Cα – Br bonds are breaking simultaneously in transition state.b)Only is eliminated in rate determining step.c)d)The reaction intermediate is resonance stabilizedCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for Both the Cβ–H and Cα–X bonds are breaking in the transition state of E2 reactions. The rate of E2 reaction is of second order. The rate shows primary isotopic (deuterium) effect, i.e. if Cβ–H is replaced by Cβ–D, the rate of reaction decreases sharply. The rate is also corelated with nucleofugality i.e. the ability of leaving group to leave. With a better nucleofuge, the rate of reaction increases. This is called the element effect.The element effect is also observed in E1cB reactions in which the second step is rate determining and elimination of first order w.r.t. conjugate base is observed. For E1cB reaction KH/KD ~ 1, therefore proton abstraction is not involved in the rate determing step. In D2O the incorporation of Deuterium at Cβ–H in the substrate is found many times faster than rate of elimination, in E1cB reaction.In E1 reaction only nucleofuge departs in slow step and a carbocation intermediate is formed.Q.For the given compounds I and II the rate of elimination byWhat is true about this reactiona)Both Cβ – H and Cα – Br bonds are breaking simultaneously in transition state.b)Only is eliminated in rate determining step.c)d)The reaction intermediate is resonance stabilizedCorrect answer is option 'A'. Can you explain this answer?.
Solutions for Both the Cβ–H and Cα–X bonds are breaking in the transition state of E2 reactions. The rate of E2 reaction is of second order. The rate shows primary isotopic (deuterium) effect, i.e. if Cβ–H is replaced by Cβ–D, the rate of reaction decreases sharply. The rate is also corelated with nucleofugality i.e. the ability of leaving group to leave. With a better nucleofuge, the rate of reaction increases. This is called the element effect.The element effect is also observed in E1cB reactions in which the second step is rate determining and elimination of first order w.r.t. conjugate base is observed. For E1cB reaction KH/KD ~ 1, therefore proton abstraction is not involved in the rate determing step. In D2O the incorporation of Deuterium at Cβ–H in the substrate is found many times faster than rate of elimination, in E1cB reaction.In E1 reaction only nucleofuge departs in slow step and a carbocation intermediate is formed.Q.For the given compounds I and II the rate of elimination byWhat is true about this reactiona)Both Cβ – H and Cα – Br bonds are breaking simultaneously in transition state.b)Only is eliminated in rate determining step.c)d)The reaction intermediate is resonance stabilizedCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE.
Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of Both the Cβ–H and Cα–X bonds are breaking in the transition state of E2 reactions. The rate of E2 reaction is of second order. The rate shows primary isotopic (deuterium) effect, i.e. if Cβ–H is replaced by Cβ–D, the rate of reaction decreases sharply. The rate is also corelated with nucleofugality i.e. the ability of leaving group to leave. With a better nucleofuge, the rate of reaction increases. This is called the element effect.The element effect is also observed in E1cB reactions in which the second step is rate determining and elimination of first order w.r.t. conjugate base is observed. For E1cB reaction KH/KD ~ 1, therefore proton abstraction is not involved in the rate determing step. In D2O the incorporation of Deuterium at Cβ–H in the substrate is found many times faster than rate of elimination, in E1cB reaction.In E1 reaction only nucleofuge departs in slow step and a carbocation intermediate is formed.Q.For the given compounds I and II the rate of elimination byWhat is true about this reactiona)Both Cβ – H and Cα – Br bonds are breaking simultaneously in transition state.b)Only is eliminated in rate determining step.c)d)The reaction intermediate is resonance stabilizedCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
Both the Cβ–H and Cα–X bonds are breaking in the transition state of E2 reactions. The rate of E2 reaction is of second order. The rate shows primary isotopic (deuterium) effect, i.e. if Cβ–H is replaced by Cβ–D, the rate of reaction decreases sharply. The rate is also corelated with nucleofugality i.e. the ability of leaving group to leave. With a better nucleofuge, the rate of reaction increases. This is called the element effect.The element effect is also observed in E1cB reactions in which the second step is rate determining and elimination of first order w.r.t. conjugate base is observed. For E1cB reaction KH/KD ~ 1, therefore proton abstraction is not involved in the rate determing step. In D2O the incorporation of Deuterium at Cβ–H in the substrate is found many times faster than rate of elimination, in E1cB reaction.In E1 reaction only nucleofuge departs in slow step and a carbocation intermediate is formed.Q.For the given compounds I and II the rate of elimination byWhat is true about this reactiona)Both Cβ – H and Cα – Br bonds are breaking simultaneously in transition state.b)Only is eliminated in rate determining step.c)d)The reaction intermediate is resonance stabilizedCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for Both the Cβ–H and Cα–X bonds are breaking in the transition state of E2 reactions. The rate of E2 reaction is of second order. The rate shows primary isotopic (deuterium) effect, i.e. if Cβ–H is replaced by Cβ–D, the rate of reaction decreases sharply. The rate is also corelated with nucleofugality i.e. the ability of leaving group to leave. With a better nucleofuge, the rate of reaction increases. This is called the element effect.The element effect is also observed in E1cB reactions in which the second step is rate determining and elimination of first order w.r.t. conjugate base is observed. For E1cB reaction KH/KD ~ 1, therefore proton abstraction is not involved in the rate determing step. In D2O the incorporation of Deuterium at Cβ–H in the substrate is found many times faster than rate of elimination, in E1cB reaction.In E1 reaction only nucleofuge departs in slow step and a carbocation intermediate is formed.Q.For the given compounds I and II the rate of elimination byWhat is true about this reactiona)Both Cβ – H and Cα – Br bonds are breaking simultaneously in transition state.b)Only is eliminated in rate determining step.c)d)The reaction intermediate is resonance stabilizedCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of Both the Cβ–H and Cα–X bonds are breaking in the transition state of E2 reactions. The rate of E2 reaction is of second order. The rate shows primary isotopic (deuterium) effect, i.e. if Cβ–H is replaced by Cβ–D, the rate of reaction decreases sharply. The rate is also corelated with nucleofugality i.e. the ability of leaving group to leave. With a better nucleofuge, the rate of reaction increases. This is called the element effect.The element effect is also observed in E1cB reactions in which the second step is rate determining and elimination of first order w.r.t. conjugate base is observed. For E1cB reaction KH/KD ~ 1, therefore proton abstraction is not involved in the rate determing step. In D2O the incorporation of Deuterium at Cβ–H in the substrate is found many times faster than rate of elimination, in E1cB reaction.In E1 reaction only nucleofuge departs in slow step and a carbocation intermediate is formed.Q.For the given compounds I and II the rate of elimination byWhat is true about this reactiona)Both Cβ – H and Cα – Br bonds are breaking simultaneously in transition state.b)Only is eliminated in rate determining step.c)d)The reaction intermediate is resonance stabilizedCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice Both the Cβ–H and Cα–X bonds are breaking in the transition state of E2 reactions. The rate of E2 reaction is of second order. The rate shows primary isotopic (deuterium) effect, i.e. if Cβ–H is replaced by Cβ–D, the rate of reaction decreases sharply. The rate is also corelated with nucleofugality i.e. the ability of leaving group to leave. With a better nucleofuge, the rate of reaction increases. This is called the element effect.The element effect is also observed in E1cB reactions in which the second step is rate determining and elimination of first order w.r.t. conjugate base is observed. For E1cB reaction KH/KD ~ 1, therefore proton abstraction is not involved in the rate determing step. In D2O the incorporation of Deuterium at Cβ–H in the substrate is found many times faster than rate of elimination, in E1cB reaction.In E1 reaction only nucleofuge departs in slow step and a carbocation intermediate is formed.Q.For the given compounds I and II the rate of elimination byWhat is true about this reactiona)Both Cβ – H and Cα – Br bonds are breaking simultaneously in transition state.b)Only is eliminated in rate determining step.c)d)The reaction intermediate is resonance stabilizedCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice JEE tests.