Class 8 Exam  >  Class 8 Questions  >  length of a rectangle exceeds it's breath by ... Start Learning for Free
length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles
?
Most Upvoted Answer
length of a rectangle exceeds it's breath by 9cm if length and breadth...
**Given Information:**
- The length of a rectangle exceeds its breadth by 9cm.
- If the length and breadth are each increased by 3cm, the area of the new rectangle will be 84cm² more than that of the given rectangle.

**Let's Solve the Problem Step-by-Step:**

**Step 1: Define the Variables**
- Let's assume the breadth of the rectangle is 'x' cm.
- Since the length of the rectangle exceeds its breadth by 9cm, we can say the length is 'x + 9' cm.

**Step 2: Calculate the Area of the Given Rectangle**
- The area of a rectangle is given by the formula: Area = Length × Breadth.
- In this case, the area of the given rectangle is: Area = (x + 9) × x = x² + 9x cm².

**Step 3: Calculate the New Length and Breadth**
- If the length and breadth are each increased by 3cm, the new length will be 'x + 9 + 3 = x + 12' cm, and the new breadth will be 'x + 3' cm.

**Step 4: Calculate the Area of the New Rectangle**
- The area of the new rectangle is: Area = (x + 12) × (x + 3) = x² + 15x + 36 cm².

**Step 5: Set up the Equation**
- The problem states that the area of the new rectangle is 84cm² more than that of the given rectangle.
- So, we can set up the equation: x² + 15x + 36 = x² + 9x + 84.

**Step 6: Solve the Equation**
- Simplifying the equation, we get: 6x - 48 = 0.
- Solving for 'x', we find: x = 8.

**Step 7: Calculate the Length and Breadth of the Given Rectangle**
- Using the value of 'x', we can find the length and breadth of the given rectangle:
- Length = x + 9 = 8 + 9 = 17 cm.
- Breadth = x = 8 cm.

**Step 8: Check the Solution**
- We can verify if the solution is correct by substituting the values back into the equation:
- Area of the given rectangle = 17 × 8 = 136 cm².
- Area of the new rectangle = (8 + 12) × (8 + 3) = 20 × 11 = 220 cm².
- The area of the new rectangle is indeed 84cm² more than that of the given rectangle.
Community Answer
length of a rectangle exceeds it's breath by 9cm if length and breadth...
Let the breadth of the rectangle be x cm. 

Then, the length of the rectangle is (x+9) cm.
So, area of rectangle = length x breadth =x(x+9)cm2
Now, length of new rectangle =(x+9+3) cm =(x+12) cm and
breadth of new rectangle =(x+3) cm.
So, area of new rectangle = length × breadth =(x+12)(x+3)cm2

According to the given condition, 
(x+12)(x+3)=x(x+9)+84

⇒x2+12x+3x+36=x2+9x+84

⇒15x+36=9x+84


⇒15x−9x=84−36

⇒6x=48⇒x=8

So, breadth of the rectangle is 8 cm and length 


=8+9=17 cm.
Attention Class 8 Students!
To make sure you are not studying endlessly, EduRev has designed Class 8 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 8.
Explore Courses for Class 8 exam

Top Courses for Class 8

length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles Related: Examples: Rhombus, Rectangle and Square(Part 2)?
Question Description
length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles Related: Examples: Rhombus, Rectangle and Square(Part 2)? for Class 8 2024 is part of Class 8 preparation. The Question and answers have been prepared according to the Class 8 exam syllabus. Information about length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles Related: Examples: Rhombus, Rectangle and Square(Part 2)? covers all topics & solutions for Class 8 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles Related: Examples: Rhombus, Rectangle and Square(Part 2)?.
Solutions for length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles Related: Examples: Rhombus, Rectangle and Square(Part 2)? in English & in Hindi are available as part of our courses for Class 8. Download more important topics, notes, lectures and mock test series for Class 8 Exam by signing up for free.
Here you can find the meaning of length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles Related: Examples: Rhombus, Rectangle and Square(Part 2)? defined & explained in the simplest way possible. Besides giving the explanation of length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles Related: Examples: Rhombus, Rectangle and Square(Part 2)?, a detailed solution for length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles Related: Examples: Rhombus, Rectangle and Square(Part 2)? has been provided alongside types of length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles Related: Examples: Rhombus, Rectangle and Square(Part 2)? theory, EduRev gives you an ample number of questions to practice length of a rectangle exceeds it's breath by 9cm if length and breadth are each increased by 3cm area of new rectangle will be 84cm more than that of given rectangle.find length and breadth of given rectangles Related: Examples: Rhombus, Rectangle and Square(Part 2)? tests, examples and also practice Class 8 tests.
Explore Courses for Class 8 exam

Top Courses for Class 8

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev