Two equal circles intersect such that each passes through the centre o...
Let the radius of each circle be $r$. Since each circle passes through the center of the other, we know that the distance between the centers is $2r$.
[asy]
size(100);
pair A,B,C,D,E,F;
A=(0,0);
B=(2,0);
C=(1,sqrt(3));
D=(1,0);
E=(1,1.732);
F=(1,-1.732);
draw(circle(A,2));
draw(circle(B,2));
draw((-2,0)--(4,0),Arrows);
draw((0,-2)--(0,4),Arrows);
draw(C--D--F--cycle);
draw((1,0)--E,dashed);
label("$r$",(0.5,0),S);
label("$r$",(2.5,0),S);
label("$2r$",(1,sqrt(3)/2),N);
[/asy]
Let $O_1$ and $O_2$ be the centers of the circles, and let $AB$ be the common chord of the circles. Let $M$ be the midpoint of $AB$, and let $OM$ be the altitude from $O$ to $AB$. Then, $OM=\frac12 AB=5$. Also, $O_1MO_2$ is a right triangle with hypotenuse $O_1O_2=2r$ and altitude $OM=5$. Therefore, by the Pythagorean theorem, we have \begin{align*}
r^2&=(O_1M)^2\\
&=(O_1O_2)^2-(OM)^2\\
&=4r^2-25.
\end{align*} Solving for $r$ gives $r=\sqrt{\frac{25}{3}}$. Therefore, the area of each circle is $\pi r^2=\boxed{\frac{25\pi}{3}}$.