JEE Exam  >  JEE Questions  >  Consider a uniform spherical planet of mass M... Start Learning for Free
Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.?
Most Upvoted Answer
Consider a uniform spherical planet of mass M and radius R. Two parall...
Problem Statement:
Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion. Tunnels are frictionless and particle just fits inside the tunnel. Consider the planet to be at rest.

Solution:

To solve this problem, we need to consider the following steps:

Step 1: Determine the gravitational field inside the planet at a distance d from the center.

Step 2: Determine the speed at which the particle should be thrown from the starting point of the tunnel.

Step 3: Determine the trajectory of the particle as it travels through the tunnel and exits into the other tunnel.

Step 1: Gravitational Field inside the Planet

The gravitational field inside a uniform spherical planet can be determined using the equation:

g = (GM/r^3) * r

where g is the gravitational field, M is the mass of the planet, r is the distance from the center of the planet, and G is the gravitational constant.

At a distance d from the center of the planet, the gravitational field can be determined as:

g = (GM/d^3) * d

Step 2: Speed of the Particle

The speed at which the particle should be thrown from the starting point of the tunnel can be determined using the equation for circular motion:

v = sqrt(g * d)

where v is the velocity of the particle, g is the gravitational field at a distance d from the center of the planet, and d is the distance between the two tunnels.

Step 3: Trajectory of the Particle

The trajectory of the particle can be determined by considering the motion of the particle as it travels through the tunnel and exits into the other tunnel. Since the tunnels are frictionless and the particle just fits inside the tunnel, we can assume that the particle will move in a straight line.

As the particle travels through the first tunnel, it will experience a gravitational force towards the center of the planet. This force will cause the particle to move in a curved path towards the center of the planet. However, since the particle is moving with a sufficient velocity, it will not collide with the wall of the tunnel.

As the particle exits the first tunnel and enters the second tunnel, it will continue to move in a straight line. However, since the second tunnel is also curved towards the center of the planet, the particle will experience a gravitational force towards the center of the planet. This force will cause the particle to move in a curved path towards the center of the planet. Again, since the particle is moving with a sufficient velocity, it will not collide with the wall of the tunnel.

Finally, as the particle exits the second tunnel, it will continue to move in a straight line and travel away from the planet.
Explore Courses for JEE exam

Similar JEE Doubts

Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.?
Question Description
Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.? covers all topics & solutions for JEE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.?.
Solutions for Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.? defined & explained in the simplest way possible. Besides giving the explanation of Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.?, a detailed solution for Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.? has been provided alongside types of Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.? theory, EduRev gives you an ample number of questions to practice Consider a uniform spherical planet of mass M and radius R. Two parallel tunnels are dug perpendicular distance symmetrically from centre. A particle is to be thrown from the starting of one tunnel such that it enters in another tunnel without making collision with tunnel wall and continues its motion . Tunnels are friction less and particle just fits inside the tunnet. Consider the planet to be rest.? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev