Class 12 Exam  >  Class 12 Questions  >   Why was the invigilator frisked?a)to ensure ... Start Learning for Free
Why was the invigilator frisked?
  • a)
    to ensure that he had no objectionable material with him
  • b)
    to check his true identity
  • c)
    to check if he was a real man
  • d)
    none
Correct answer is option 'A'. Can you explain this answer?
Verified Answer
Why was the invigilator frisked?a)to ensure that he had no objectiona...
The prison staff and the Governor took all the necessary precautions to ensure a smooth conduct of Evan’s examination. The Governor personally supervised all the security arrangements. Evan’s cell was thoroughly .checked by Jackson to ward off the possibility of any incriminating material. Evans’ nail- scissors, nail file and razor where taken away. A police officer Stephens was posted to keep a constant vigil on his activities. Mr. McLeery, a parson, was to invigilate. The invigilator too was frisked to make sure that he carried no objectionable material with him.
View all questions of this test
Explore Courses for Class 12 exam

Similar Class 12 Doubts

Read the following text and answer the following questions on the basis of the same:Negative Refractive Index: One of the most fundamental phenomena in optics is refraction. When a beam of light crosses the interface between two different materials, its path is altered depending on the difference in the refractive indices of the materials. The greater the difference, the greater the refraction of the beam. For all known naturally occurring materials the refractive index assumes only positive values. But does this have to be the case?In 1967, Soviet physicist Victor Veselago hypothesized that a material with a negative refractive index could exist without violating any of the laws of physics.Veselago predicted that this remarkable material would exhibit a wide variety of new optical phenomena. However, until recently no one had found such a material and Veselago’s ideas had remained untested. Recently, meta-material samples are being tested for negative refractive index. But the experiments show significant losses and this could be an intrinsic property of negativeindex materials.Snell’s law is satisfied for the materials having a negative refractive index, but the direction of the refracted light ray is ‘mirror-imaged’ about the normal to the surface.There will be an interesting difference in image formation if a vessel is filled with “negative water” having refractive index – 1.33 instead of regular water having refractive index 1.33.Say, there is a fish in a vessel filled with negative water. The position of the fish is such that the observer cannot see it due to normal refraction since the refracted ray does not reach to his eye.But due to negative refraction, he will be able to see it since the refracted ray now reaches his eye.Q. When the angle of incidence will be equal to angle of refraction for material having negative refraction index?

Read the following text and answer the following questions on the basis of the same:Negative Refractive Index: One of the most fundamental phenomena in optics is refraction. When a beam of light crosses the interface between two different materials, its path is altered depending on the difference in the refractive indices of the materials. The greater the difference, the greater the refraction of the beam. For all known naturally occurring materials the refractive index assumes only positive values. But does this have to be the case?In 1967, Soviet physicist Victor Veselago hypothesized that a material with a negative refractive index could exist without violating any of the laws of physics.Veselago predicted that this remarkable material would exhibit a wide variety of new optical phenomena. However, until recently no one had found such a material and Veselago’s ideas had remained untested. Recently, meta-material samples are being tested for negative refractive index. But the experiments show significant losses and this could be an intrinsic property of negativeindex materials.Snell’s law is satisfied for the materials having a negative refractive index, but the direction of the refracted light ray is ‘mirror-imaged’ about the normal to the surface.There will be an interesting difference in image formation if a vessel is filled with “negative water” having refractive index – 1.33 instead of regular water having refractive index 1.33.Say, there is a fish in a vessel filled with negative water. The position of the fish is such that the observer cannot see it due to normal refraction since the refracted ray does not reach to his eye.But due to negative refraction, he will be able to see it since the refracted ray now reaches his eye.Q. Who hypothesized that a material may have a negative refractive index ?

Read the following text and answer the following questions on the basis of the same:Negative Refractive Index: One of the most fundamental phenomena in optics is refraction. When a beam of light crosses the interface between two different materials, its path is altered depending on the difference in the refractive indices of the materials. The greater the difference, the greater the refraction of the beam. For all known naturally occurring materials the refractive index assumes only positive values. But does this have to be the case?In 1967, Soviet physicist Victor Veselago hypothesized that a material with a negative refractive index could exist without violating any of the laws of physics.Veselago predicted that this remarkable material would exhibit a wide variety of new optical phenomena. However, until recently no one had found such a material and Veselago’s ideas had remained untested. Recently, meta-material samples are being tested for negative refractive index. But the experiments show significant losses and this could be an intrinsic property of negativeindex materials.Snell’s law is satisfied for the materials having a negative refractive index, but the direction of the refracted light ray is ‘mirror-imaged’ about the normal to the surface.There will be an interesting difference in image formation if a vessel is filled with “negative water” having refractive index – 1.33 instead of regular water having refractive index 1.33.Say, there is a fish in a vessel filled with negative water. The position of the fish is such that the observer cannot see it due to normal refraction since the refracted ray does not reach to his eye.But due to negative refraction, he will be able to see it since the refracted ray now reaches his eye.Q. Which of the following is the intrinsic property of negative-index materials?

Read the following text and answer the following questions on the basis of the same:Negative Refractive Index: One of the most fundamental phenomena in optics is refraction. When a beam of light crosses the interface between two different materials, its path is altered depending on the difference in the refractive indices of the materials. The greater the difference, the greater the refraction of the beam. For all known naturally occurring materials the refractive index assumes only positive values. But does this have to be the case?In 1967, Soviet physicist Victor Veselago hypothesized that a material with a negative refractive index could exist without violating any of the laws of physics.Veselago predicted that this remarkable material would exhibit a wide variety of new optical phenomena. However, until recently no one had found such a material and Veselago’s ideas had remained untested. Recently, meta-material samples are being tested for negative refractive index. But the experiments show significant losses and this could be an intrinsic property of negativeindex materials.Snell’s law is satisfied for the materials having a negative refractive index, but the direction of the refracted light ray is ‘mirror-imaged’ about the normal to the surface.There will be an interesting difference in image formation if a vessel is filled with “negative water” having refractive index – 1.33 instead of regular water having refractive index 1.33.Say, there is a fish in a vessel filled with negative water. The position of the fish is such that the observer cannot see it due to normal refraction since the refracted ray does not reach to his eye.But due to negative refraction, he will be able to see it since the refracted ray now reaches his eye.Q. Is Snell’s law applicable for negative refraction ?

Read the following text and answer the following questions on the basis of the same:Negative Refractive Index: One of the most fundamental phenomena in optics is refraction. When a beam of light crosses the interface between two different materials, its path is altered depending on the difference in the refractive indices of the materials. The greater the difference, the greater the refraction of the beam. For all known naturally occurring materials the refractive index assumes only positive values. But does this have to be the case?In 1967, Soviet physicist Victor Veselago hypothesized that a material with a negative refractive index could exist without violating any of the laws of physics.Veselago predicted that this remarkable material would exhibit a wide variety of new optical phenomena. However, until recently no one had found such a material and Veselago’s ideas had remained untested. Recently, meta-material samples are being tested for negative refractive index. But the experiments show significant losses and this could be an intrinsic property of negativeindex materials.Snell’s law is satisfied for the materials having a negative refractive index, but the direction of the refracted light ray is ‘mirror-imaged’ about the normal to the surface.There will be an interesting difference in image formation if a vessel is filled with “negative water” having refractive index – 1.33 instead of regular water having refractive index 1.33.Say, there is a fish in a vessel filled with negative water. The position of the fish is such that the observer cannot see it due to normal refraction since the refracted ray does not reach to his eye.But due to negative refraction, he will be able to see it since the refracted ray now reaches his eye.Q. A ray incident on normal glass and “negative glass” at an angle 60°. If the magnitude of angle of refraction in normal glass is 45° then, what will be the magnitude of angle of refraction in the “negative glass”?

Why was the invigilator frisked?a)to ensure that he had no objectionable material with himb)to check his true identityc)to check if he was a real mand)noneCorrect answer is option 'A'. Can you explain this answer?
Question Description
Why was the invigilator frisked?a)to ensure that he had no objectionable material with himb)to check his true identityc)to check if he was a real mand)noneCorrect answer is option 'A'. Can you explain this answer? for Class 12 2024 is part of Class 12 preparation. The Question and answers have been prepared according to the Class 12 exam syllabus. Information about Why was the invigilator frisked?a)to ensure that he had no objectionable material with himb)to check his true identityc)to check if he was a real mand)noneCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for Class 12 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Why was the invigilator frisked?a)to ensure that he had no objectionable material with himb)to check his true identityc)to check if he was a real mand)noneCorrect answer is option 'A'. Can you explain this answer?.
Solutions for Why was the invigilator frisked?a)to ensure that he had no objectionable material with himb)to check his true identityc)to check if he was a real mand)noneCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for Class 12. Download more important topics, notes, lectures and mock test series for Class 12 Exam by signing up for free.
Here you can find the meaning of Why was the invigilator frisked?a)to ensure that he had no objectionable material with himb)to check his true identityc)to check if he was a real mand)noneCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Why was the invigilator frisked?a)to ensure that he had no objectionable material with himb)to check his true identityc)to check if he was a real mand)noneCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for Why was the invigilator frisked?a)to ensure that he had no objectionable material with himb)to check his true identityc)to check if he was a real mand)noneCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of Why was the invigilator frisked?a)to ensure that he had no objectionable material with himb)to check his true identityc)to check if he was a real mand)noneCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Why was the invigilator frisked?a)to ensure that he had no objectionable material with himb)to check his true identityc)to check if he was a real mand)noneCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice Class 12 tests.
Explore Courses for Class 12 exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev