Class 11 Exam  >  Class 11 Questions  >  Flywheel and sewing machineThere is a differe... Start Learning for Free
Flywheel and sewing machine
There is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.
This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.
We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is
(where I = moment of inertia and ω = angular velocity).
Energy stored in a flywheel is
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?
Verified Answer
Flywheel and sewing machineThere is a difference between inertia and m...
Kinetic energy of an moving in a straight line is
The kinetic energy of a spinning object is
View all questions of this test
Explore Courses for Class 11 exam

Top Courses for Class 11

Flywheel and sewing machineThere is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is(where I = moment of inertia and ω = angular velocity).Energy stored in a flywheel isa)b)c)d)Correct answer is option 'D'. Can you explain this answer?
Question Description
Flywheel and sewing machineThere is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is(where I = moment of inertia and ω = angular velocity).Energy stored in a flywheel isa)b)c)d)Correct answer is option 'D'. Can you explain this answer? for Class 11 2024 is part of Class 11 preparation. The Question and answers have been prepared according to the Class 11 exam syllabus. Information about Flywheel and sewing machineThere is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is(where I = moment of inertia and ω = angular velocity).Energy stored in a flywheel isa)b)c)d)Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for Class 11 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Flywheel and sewing machineThere is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is(where I = moment of inertia and ω = angular velocity).Energy stored in a flywheel isa)b)c)d)Correct answer is option 'D'. Can you explain this answer?.
Solutions for Flywheel and sewing machineThere is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is(where I = moment of inertia and ω = angular velocity).Energy stored in a flywheel isa)b)c)d)Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for Class 11. Download more important topics, notes, lectures and mock test series for Class 11 Exam by signing up for free.
Here you can find the meaning of Flywheel and sewing machineThere is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is(where I = moment of inertia and ω = angular velocity).Energy stored in a flywheel isa)b)c)d)Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Flywheel and sewing machineThere is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is(where I = moment of inertia and ω = angular velocity).Energy stored in a flywheel isa)b)c)d)Correct answer is option 'D'. Can you explain this answer?, a detailed solution for Flywheel and sewing machineThere is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is(where I = moment of inertia and ω = angular velocity).Energy stored in a flywheel isa)b)c)d)Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of Flywheel and sewing machineThere is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is(where I = moment of inertia and ω = angular velocity).Energy stored in a flywheel isa)b)c)d)Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Flywheel and sewing machineThere is a difference between inertia and moment of inertia of a body. Inertia depends on the mass of the body but the moment of inertia about an axis depends on the mass of the body and the distribution of its mass about the axis. In the following figure, the masses of the two wheels are exactly equal but in the wheel (A) the mass is uniformly distributed and in the wheel (B) most of the mass is situated at the rim. Both the wheels rotate about axis passing through the centre. It is noticed that while the two wheel are set in rotation and left, wheel (B) continues rotating for a longer time.This means that the moment of inertia of wheel (B) is greater than the wheel (B). Also greater is the part of the mass of the body away from the axis of rotation, greater the moment of inertia of the body about the axis. Such a wheel is known as flywheel. Consider a foot operated sewing machine. It has of two wheels – one big and the other small. The wheels are connected by a rope. The bigger wheel acts as flywheel. The rope transfers the motion from this flywheel to the smaller wheel. Smaller wheel works as a pulley and also as a small flywheel.We see even we stop supply of driving force to the bigger wheel it still continues to run for a short time because of its moment of inertia. So, flywheel acts as an energy reservoir by storing and supplying mechanical energy when required. The kinetic energy stored in a flywheel is(where I = moment of inertia and ω = angular velocity).Energy stored in a flywheel isa)b)c)d)Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice Class 11 tests.
Explore Courses for Class 11 exam

Top Courses for Class 11

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev