Class 12 Exam  >  Class 12 Questions  >  (a,a) ∈ R, for every a ∈ A. This co... Start Learning for Free
(a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?
  • a)
    Reflexive relation
  • b)
    Symmetric relation
  • c)
    Equivalence relation
  • d)
    Transitive relation
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
(a,a) ∈ R, for every a ∈ A. This condition is for which of t...
This is a pair of values, both of which are represented by the letter "a". Without any additional context or information, it is impossible to determine the meaning or significance of this particular pair. It could represent anything from a coordinate on a graph to a value in a dataset to a pair of parameters in a mathematical equation.
Free Test
Community Answer
(a,a) ∈ R, for every a ∈ A. This condition is for which of t...
The above is the condition for a reflexive relation. A relation is said to be reflexive if every element in the set is related to itself.
Explore Courses for Class 12 exam
(a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?a)Reflexive relationb)Symmetric relationc)Equivalence relationd)Transitive relationCorrect answer is option 'A'. Can you explain this answer?
Question Description
(a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?a)Reflexive relationb)Symmetric relationc)Equivalence relationd)Transitive relationCorrect answer is option 'A'. Can you explain this answer? for Class 12 2025 is part of Class 12 preparation. The Question and answers have been prepared according to the Class 12 exam syllabus. Information about (a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?a)Reflexive relationb)Symmetric relationc)Equivalence relationd)Transitive relationCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for Class 12 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for (a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?a)Reflexive relationb)Symmetric relationc)Equivalence relationd)Transitive relationCorrect answer is option 'A'. Can you explain this answer?.
Solutions for (a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?a)Reflexive relationb)Symmetric relationc)Equivalence relationd)Transitive relationCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for Class 12. Download more important topics, notes, lectures and mock test series for Class 12 Exam by signing up for free.
Here you can find the meaning of (a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?a)Reflexive relationb)Symmetric relationc)Equivalence relationd)Transitive relationCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of (a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?a)Reflexive relationb)Symmetric relationc)Equivalence relationd)Transitive relationCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for (a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?a)Reflexive relationb)Symmetric relationc)Equivalence relationd)Transitive relationCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of (a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?a)Reflexive relationb)Symmetric relationc)Equivalence relationd)Transitive relationCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice (a,a) ∈ R, for every a ∈ A. This condition is for which of the following relations?a)Reflexive relationb)Symmetric relationc)Equivalence relationd)Transitive relationCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice Class 12 tests.
Explore Courses for Class 12 exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev