If the sum of the coefficients in the expansion of (α2x2 - 2&alp...
We need to find the sum of all coefficients in the expansion of $(a+b+c+d)^{10}$.
By the Binomial Theorem, the coefficient of $a^p b^q c^r d^s$ in the expansion of $(a+b+c+d)^{10}$ is:
$$\binom{10}{p,q,r,s} = \frac{10!}{p!q!r!s!}$$
where $p+q+r+s=10$.
To find the sum of all coefficients, we need to sum over all possible values of $p,q,r,s$ that satisfy $p+q+r+s=10$:
$$\sum_{p+q+r+s=10} \binom{10}{p,q,r,s} = \sum_{p=0}^{10}\sum_{q=0}^{10-p}\sum_{r=0}^{10-p-q}\binom{10}{p,q,r,10-p-q-r}$$
We can simplify this expression by using the Hockey Stick Identity, which states that:
$$\sum_{k=n}^{m}\binom{k}{n} = \binom{m+1}{n+1}$$
Using this identity twice, we get:
\begin{align*}
\sum_{p=0}^{10}\sum_{q=0}^{10-p}\sum_{r=0}^{10-p-q}\binom{10}{p,q,r,10-p-q-r} &= \sum_{p=0}^{10}\sum_{q=0}^{10-p}\binom{11-p-q}{2}\\
&= \sum_{p=0}^{10}\binom{12-p}{3}\\
&= \binom{13}{4}\\
&= \boxed{715}
\end{align*}
Therefore, the sum of all coefficients in the expansion of $(a+b+c+d)^{10}$ is 715.
If the sum of the coefficients in the expansion of (α2x2 - 2&alp...
To find the sum of coefficients in any expansion, we put all variables as 1.
sum of coefficients = (α^2 − 2α + 1)^51=0
(α^2 − 2α + 1)^51 = 0
α^2 − 2α + 1 = 0
(a-1)^2=0
a=1