Question Description
A closed cylinder of length l containing a liquid of variable density ρ(x) = ρ0(1 + αx) is rotating about a vertical axis with an angular speed ω. Find the net force exerted by the liquid on the axis of rotation. (Take the cylinder to be massless and A = cross sectional area of cylinder, ignore the gravity) -a)b)c)d)Correct answer is option 'A'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared
according to
the JEE exam syllabus. Information about A closed cylinder of length l containing a liquid of variable density ρ(x) = ρ0(1 + αx) is rotating about a vertical axis with an angular speed ω. Find the net force exerted by the liquid on the axis of rotation. (Take the cylinder to be massless and A = cross sectional area of cylinder, ignore the gravity) -a)b)c)d)Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for A closed cylinder of length l containing a liquid of variable density ρ(x) = ρ0(1 + αx) is rotating about a vertical axis with an angular speed ω. Find the net force exerted by the liquid on the axis of rotation. (Take the cylinder to be massless and A = cross sectional area of cylinder, ignore the gravity) -a)b)c)d)Correct answer is option 'A'. Can you explain this answer?.
Solutions for A closed cylinder of length l containing a liquid of variable density ρ(x) = ρ0(1 + αx) is rotating about a vertical axis with an angular speed ω. Find the net force exerted by the liquid on the axis of rotation. (Take the cylinder to be massless and A = cross sectional area of cylinder, ignore the gravity) -a)b)c)d)Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE.
Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of A closed cylinder of length l containing a liquid of variable density ρ(x) = ρ0(1 + αx) is rotating about a vertical axis with an angular speed ω. Find the net force exerted by the liquid on the axis of rotation. (Take the cylinder to be massless and A = cross sectional area of cylinder, ignore the gravity) -a)b)c)d)Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
A closed cylinder of length l containing a liquid of variable density ρ(x) = ρ0(1 + αx) is rotating about a vertical axis with an angular speed ω. Find the net force exerted by the liquid on the axis of rotation. (Take the cylinder to be massless and A = cross sectional area of cylinder, ignore the gravity) -a)b)c)d)Correct answer is option 'A'. Can you explain this answer?, a detailed solution for A closed cylinder of length l containing a liquid of variable density ρ(x) = ρ0(1 + αx) is rotating about a vertical axis with an angular speed ω. Find the net force exerted by the liquid on the axis of rotation. (Take the cylinder to be massless and A = cross sectional area of cylinder, ignore the gravity) -a)b)c)d)Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of A closed cylinder of length l containing a liquid of variable density ρ(x) = ρ0(1 + αx) is rotating about a vertical axis with an angular speed ω. Find the net force exerted by the liquid on the axis of rotation. (Take the cylinder to be massless and A = cross sectional area of cylinder, ignore the gravity) -a)b)c)d)Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice A closed cylinder of length l containing a liquid of variable density ρ(x) = ρ0(1 + αx) is rotating about a vertical axis with an angular speed ω. Find the net force exerted by the liquid on the axis of rotation. (Take the cylinder to be massless and A = cross sectional area of cylinder, ignore the gravity) -a)b)c)d)Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice JEE tests.