If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin...
Local Maximum Value of Function
We are given the function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) and we need to find the local maximum value of the function.
Solution
Step 1: Finding the Derivative of the Function
To find the local maximum value of the function, we need to find the derivative of the function.
f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x)
ln(f(x)) = (sin^2(x)) * ln(sqrt(3e)/(2sin(x)))
ln(f(x)) = (sin^2(x)) * (ln(sqrt(3e)) - ln(2sin(x)))
ln(f(x)) = (sin^2(x)) * (ln(sqrt(3e)) - ln(2) - ln(sin(x)))
ln(f(x)) = (sin^2(x)) * ln(sqrt(3e)/2) - (sin^2(x)) * ln(sin(x))
Now, we can find the derivative of ln(f(x)):
ln(f(x))' = 2sin(x) * ln(sqrt(3e)/2) - sin^2(x)/sin(x)
We can simplify this expression further:
ln(f(x))' = 2sin(x) * ln(sqrt(3e)/2) - sin(x)
Step 2: Finding the Critical Points of the Function
To find the critical points of the function, we need to set the derivative equal to 0:
ln(f(x))' = 2sin(x) * ln(sqrt(3e)/2) - sin(x) = 0
2sin(x) * ln(sqrt(3e)/2) = sin(x)
ln(sqrt(3e)/2) = 1/2
sqrt(3e)/2 = e^(1/2)
sqrt(3e) = 2e^(1/2)
3e = 4e
This equation has no solution in the interval (0, pi/2).
Step 3: Finding the Second Derivative of the Function
To determine whether the critical point is a local maximum or a local minimum, we need to find the second derivative of the function:
ln(f(x))'' = 2ln(sqrt(3e)/2) - cos(x)
ln(f(x))'' = 2ln(sqrt(3e)/2) - cos(x)
ln(f(x))'' = 2ln(e^(1/2)) - cos(x)
ln(f(x))'' = 1 - cos(x)
Step 4: Evaluating the Second Derivative at the Critical Point
Since there is no critical point, we cannot evaluate the second