JEE Exam  >  JEE Questions  >  If local maximum value of function f(x) = ((s... Start Learning for Free
If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =?
Most Upvoted Answer
If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin...
Local Maximum Value of Function f(x)


Given Function:

f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2)


Local Maximum Value:

The local maximum value of the given function is K/e.


Solution


Step 1: Calculating First Derivative

To find the local maximum value, we need to calculate the first derivative of the given function.


f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x)

Using the chain rule:

f'(x) = (sin^2 x) * ln((sqrt(3e))/(2sin x)) * ((sqrt(3e))/(2sin x)) ^ (sin^2 x - 1) * (-2cos x / (2sin^2 x))

f'(x) = -((sqrt(3e))/(sin x)) * (sin^2 x) * ln((sqrt(3e))/(2sin x)) * ((sqrt(3e))/(2sin x)) ^ (sin^2 x - 1) * cos x / sin x

f'(x) = -((sqrt(3e))^2/(2sin^3 x)) * (sin^2 x) * ln((sqrt(3e))/(2sin x)) * ((sqrt(3e))/(2sin x)) ^ (sin^2 x - 1) * cos x


Step 2: Calculating Second Derivative

Now, we need to calculate the second derivative of the given function.


f'(x) = -((sqrt(3e))^2/(2sin^3 x)) * (sin^2 x) * ln((sqrt(3e))/(2sin x)) * ((sqrt(3e))/(2sin x)) ^ (sin^2 x - 1) * cos x

Using the product rule:

f''(x) = -((sqrt(3e))^2/(2sin^3 x)) * (sin^2 x) * [(sin^2 x - 1) * ln((sqrt(3e))/(2sin x)) * ((sqrt(3e))/(2sin x)) ^ (sin^2 x - 2) * (-2cos x / (2sin^2 x)) + ln((sqrt(3e))/(2sin x)) * ((sqrt(3e))/(2sin x)) ^ (sin^2 x - 1) * (-2cos x / (2sin^2 x))] - ((sqrt(3e))^2/(2sin^3 x)) * ln((sqrt(3e))/(2sin x)) * ((sqrt(3e))/(2sin x)) ^ (sin^2 x - 1) * 2sin x / (2sin^3 x) * (sin^2 x)

f''(x) = ((sqrt(3e))^4/(4sin^5 x)) * [(sin^2 x
Community Answer
If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin...
Local Maximum Value of Function


We are given the function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) and we need to find the local maximum value of the function.


Solution


Step 1: Finding the Derivative of the Function


To find the local maximum value of the function, we need to find the derivative of the function.


f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x)

ln(f(x)) = (sin^2(x)) * ln(sqrt(3e)/(2sin(x)))

ln(f(x)) = (sin^2(x)) * (ln(sqrt(3e)) - ln(2sin(x)))

ln(f(x)) = (sin^2(x)) * (ln(sqrt(3e)) - ln(2) - ln(sin(x)))

ln(f(x)) = (sin^2(x)) * ln(sqrt(3e)/2) - (sin^2(x)) * ln(sin(x))


Now, we can find the derivative of ln(f(x)):


ln(f(x))' = 2sin(x) * ln(sqrt(3e)/2) - sin^2(x)/sin(x)


We can simplify this expression further:


ln(f(x))' = 2sin(x) * ln(sqrt(3e)/2) - sin(x)


Step 2: Finding the Critical Points of the Function


To find the critical points of the function, we need to set the derivative equal to 0:


ln(f(x))' = 2sin(x) * ln(sqrt(3e)/2) - sin(x) = 0


2sin(x) * ln(sqrt(3e)/2) = sin(x)


ln(sqrt(3e)/2) = 1/2


sqrt(3e)/2 = e^(1/2)


sqrt(3e) = 2e^(1/2)


3e = 4e


This equation has no solution in the interval (0, pi/2).


Step 3: Finding the Second Derivative of the Function


To determine whether the critical point is a local maximum or a local minimum, we need to find the second derivative of the function:


ln(f(x))'' = 2ln(sqrt(3e)/2) - cos(x)


ln(f(x))'' = 2ln(sqrt(3e)/2) - cos(x)


ln(f(x))'' = 2ln(e^(1/2)) - cos(x)


ln(f(x))'' = 1 - cos(x)


Step 4: Evaluating the Second Derivative at the Critical Point


Since there is no critical point, we cannot evaluate the second
Explore Courses for JEE exam
If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =?
Question Description
If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =? for JEE 2025 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =? covers all topics & solutions for JEE 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =?.
Solutions for If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =? defined & explained in the simplest way possible. Besides giving the explanation of If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =?, a detailed solution for If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =? has been provided alongside types of If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =? theory, EduRev gives you an ample number of questions to practice If local maximum value of function f(x) = ((sqrt(3e))/(2sin x)) ^ (sin^2 x); ,x in (0, pi/2) is K/e then (K/e) ^ 8 (k ^ theta)/(e ^ 5) K ^ theta =? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev