Mechanical Engineering Exam  >  Mechanical Engineering Questions  >  In incompressible fluid (kinematic viscosity ... Start Learning for Free
In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate is
  • a)
    65.1
  • b)
    0.651
  • c)
    6.51
  • d)
    651
Correct answer is option 'B'. Can you explain this answer?
Most Upvoted Answer
In incompressible fluid (kinematic viscosity = 7.4 × 10−7 ...
γ = 7.4 × 10−7 m2/s
SG = 0.88
ρ = (SG) × ρwater = 0.88 × 1000
= 880 kg/m3
du = u2 – u = 0.5 m/s
μ = γρ
= 0.651 Pa
Hence, the correct option is (b).
Attention Mechanical Engineering Students!
To make sure you are not studying endlessly, EduRev has designed Mechanical Engineering study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Mechanical Engineering.
Explore Courses for Mechanical Engineering exam

Top Courses for Mechanical Engineering

In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate isa)65.1b)0.651c)6.51d)651Correct answer is option 'B'. Can you explain this answer?
Question Description
In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate isa)65.1b)0.651c)6.51d)651Correct answer is option 'B'. Can you explain this answer? for Mechanical Engineering 2024 is part of Mechanical Engineering preparation. The Question and answers have been prepared according to the Mechanical Engineering exam syllabus. Information about In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate isa)65.1b)0.651c)6.51d)651Correct answer is option 'B'. Can you explain this answer? covers all topics & solutions for Mechanical Engineering 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate isa)65.1b)0.651c)6.51d)651Correct answer is option 'B'. Can you explain this answer?.
Solutions for In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate isa)65.1b)0.651c)6.51d)651Correct answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for Mechanical Engineering. Download more important topics, notes, lectures and mock test series for Mechanical Engineering Exam by signing up for free.
Here you can find the meaning of In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate isa)65.1b)0.651c)6.51d)651Correct answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate isa)65.1b)0.651c)6.51d)651Correct answer is option 'B'. Can you explain this answer?, a detailed solution for In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate isa)65.1b)0.651c)6.51d)651Correct answer is option 'B'. Can you explain this answer? has been provided alongside types of In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate isa)65.1b)0.651c)6.51d)651Correct answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice In incompressible fluid (kinematic viscosity = 7.4 × 10−7 m2/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascal on the surface of bottom plate isa)65.1b)0.651c)6.51d)651Correct answer is option 'B'. Can you explain this answer? tests, examples and also practice Mechanical Engineering tests.
Explore Courses for Mechanical Engineering exam

Top Courses for Mechanical Engineering

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev