Class 12 Exam  >  Class 12 Questions  >  Why copper is good conductor of electricity i... Start Learning for Free
Why copper is good conductor of electricity in comparing with other metal?
Most Upvoted Answer
Why copper is good conductor of electricity in comparing with other me...
Electrical conductivity is a measure of how well a material transports an electric charge. This is an essential property in electrical wiring systems. Copper has the highest electrical conductivity rating of all non-precious metals: the electrical resistivity of copper = 16.78 nΩ•m at 20degree C. Specially-pure Oxygen-Free Electronic (OFE) copper is about 1% more conductive (i.e., achieves a minimum of 101% IACS).
In a copper atom, the outermost 4s energy zone, or conduction band, is only half filled, so many electrons are able to carry electric current. When an electric field is applied to a copper wire, the conduction of electrons accelerates towards the electropositive end, thereby creating a current. These electrons encounter resistance to their passage by colliding with impurity atoms, vacancies, lattice ions, and imperfections. The average distance travelled between collisions, defined as the “mean free path,” is inversely proportional to the resistivity of the metal. What is unique about copper is its long mean free path (approximately 100 atomic spacings at room temperature). This mean free path increases rapidly as copper is chilled.
Because of its superior conductivity, annealed copper became the international standard to which all other electrical conductors are compared.
The main grade of copper used for electrical applications is electrolytic-tough pitch (ETP) copper . This copper is at least 99.90% pure and has an electrical conductivity of at least 101% IACS. ETP copper contains a small percentage of oxygen (0.02 to 0.04%). If high conductivity copper needs to be welded or brazed or used in a reducing atmosphere, then oxygen-free copper may be used.
Several electrically conductive metals are less dense than copper, but require larger cross sections to carry the same current and may not be usable when limited space is a major requirement.
 Aluminium has 61% of the conductivity of copper. The cross sectional area of an aluminium conductor must be 56% larger than copper for the same current carrying capability. The need to increase the thickness of aluminium wire restricts its use in several applications, such as in small motors and automobiles. In some applications such as aerial electric power transmission cables, copper is rarely used.
Silver, a precious metal, is the only metal with a higher electrical conductivity than copper. The electrical conductivity of silver is 106% of that of annealed copper on the IACS scale, and the electrical resistivity of silver = 15.9 nΩ•m at 20degree C. The high cost of silver combined with its low tensile strength limits its use to special applications, such as joint plating and sliding contact surfaces, and plating for the conductors in high-quality coaxial cables used at frequencies above 30 MHz.
Explore Courses for Class 12 exam

Similar Class 12 Doubts

Read the following text and answer the following questions on the basis of the same:Types of resistors Most common type of resistor is Carbon Composition Resistors. Carbon resistors are a cheap, general purpose resistor used in electrical and electronic circuits. Their resistive element is manufactured from a mixture of finely ground carbon dust or graphite and a non-conducting ceramic powder to bind it all together. The ratio of carbon dust to ceramic (conductor to insulator) determines the resistive value of the resistor. Higher the ratio of carbon, lower the overall resistance. Film Type Resistors consist of Metal Film, Carbon Film and Metal Oxide Film .Such resistors are generally made by depositing pure metals, such as nickel, or an oxide film, such as tin-oxide, on an insulating ceramic rod or substrate. The resistive value of the resistor is controlled by increasing the desired thickness of the deposited film giving them the names of either “thick-film resistors” or “thin-film resistors”. Film type resistors can achieve much higher ohmic value compared to other types. Another type of resistor, called a Wirewound Resistor, is made by winding a thin metal alloy wire (Nichrom e) or similar wire on an insulating ceramic former in the form of a spiral helix. These types of resistors are generally only available in very low ohmic value with high precision . They are able to handle much higher electrical currents than other resistors of the same ohmic value with much excessive power ratings. These high power resistors are moulded into an aluminium heat sink body with fins attached to increase their overall surface area to promote heat loss and cooling.Wirewound Resistors are made by winding a thin _____ or similar wire on an ____ former in the form of a spiral helix.

Read the following text and answer the following questions on the basis of the same:Types of resistors Most common type of resistor is Carbon Composition Resistors. Carbon resistors are a cheap, general purpose resistor used in electrical and electronic circuits. Their resistive element is manufactured from a mixture of finely ground carbon dust or graphite and a non-conducting ceramic powder to bind it all together. The ratio of carbon dust to ceramic (conductor to insulator) determines the resistive value of the resistor. Higher the ratio of carbon, lower the overall resistance. Film Type Resistors consist of Metal Film, Carbon Film and Metal Oxide Film .Such resistors are generally made by depositing pure metals, such as nickel, or an oxide film, such as tin-oxide, on an insulating ceramic rod or substrate. The resistive value of the resistor is controlled by increasing the desired thickness of the deposited film giving them the names of either “thick-film resistors” or “thin-film resistors”. Film type resistors can achieve much higher ohmic value compared to other types. Another type of resistor, called a Wirewound Resistor, is made by winding a thin metal alloy wire (Nichrom e) or similar wire on an insulating ceramic former in the form of a spiral helix. These types of resistors are generally only available in very low ohmic value with high precision . They are able to handle much higher electrical currents than other resistors of the same ohmic value with much excessive power ratings. These high power resistors are moulded into an aluminium heat sink body with fins attached to increase their overall surface area to promote heat loss and cooling.Carbon composition resistors are made from a mixture of

Read the following text and answer the following questions on the basis of the same:Types of resistors Most common type of resistor is Carbon Composition Resistors. Carbon resistors are a cheap, general purpose resistor used in electrical and electronic circuits. Their resistive element is manufactured from a mixture of finely ground carbon dust or graphite and a non-conducting ceramic powder to bind it all together. The ratio of carbon dust to ceramic (conductor to insulator) determines the resistive value of the resistor. Higher the ratio of carbon, lower the overall resistance. Film Type Resistors consist of Metal Film, Carbon Film and Metal Oxide Film .Such resistors are generally made by depositing pure metals, such as nickel, or an oxide film, such as tin-oxide, on an insulating ceramic rod or substrate. The resistive value of the resistor is controlled by increasing the desired thickness of the deposited film giving them the names of either “thick-film resistors” or “thin-film resistors”. Film type resistors can achieve much higher ohmic value compared to other types. Another type of resistor, called a Wirewound Resistor, is made by winding a thin metal alloy wire (Nichrom e) or similar wire on an insulating ceramic former in the form of a spiral helix. These types of resistors are generally only available in very low ohmic value with high precision . They are able to handle much higher electrical currents than other resistors of the same ohmic value with much excessive power ratings. These high power resistors are moulded into an aluminium heat sink body with fins attached to increase their overall surface area to promote heat loss and cooling.Metal Film Type Resistors are generally made by depositing pure ______, on ______ rod or substrate.

Why copper is good conductor of electricity in comparing with other metal?
Question Description
Why copper is good conductor of electricity in comparing with other metal? for Class 12 2025 is part of Class 12 preparation. The Question and answers have been prepared according to the Class 12 exam syllabus. Information about Why copper is good conductor of electricity in comparing with other metal? covers all topics & solutions for Class 12 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Why copper is good conductor of electricity in comparing with other metal?.
Solutions for Why copper is good conductor of electricity in comparing with other metal? in English & in Hindi are available as part of our courses for Class 12. Download more important topics, notes, lectures and mock test series for Class 12 Exam by signing up for free.
Here you can find the meaning of Why copper is good conductor of electricity in comparing with other metal? defined & explained in the simplest way possible. Besides giving the explanation of Why copper is good conductor of electricity in comparing with other metal?, a detailed solution for Why copper is good conductor of electricity in comparing with other metal? has been provided alongside types of Why copper is good conductor of electricity in comparing with other metal? theory, EduRev gives you an ample number of questions to practice Why copper is good conductor of electricity in comparing with other metal? tests, examples and also practice Class 12 tests.
Explore Courses for Class 12 exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev