JEE Exam  >  JEE Questions  >  Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x... Start Learning for Free
Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|?
Most Upvoted Answer
Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|?
**Solution:**

To find the value of |sin3x cos3x|, we need to simplify the given equation and then evaluate the expression. Let's break down the problem step by step:

**Step 1: Simplifying the equation**
The given equation is tan x tan2x tan3x = tan x tan2x tan3x. This equation is true for all values of x except for those where any of the tangents is undefined (i.e., when the denominator of any of the tangents is zero). Since we are interested in finding the value of |sin3x cos3x|, we can assume that x is not equal to (2n+1)π/2, where n is an integer.

**Step 2: Using the trigonometric identity**
We can use the trigonometric identity tan(A) tan(B) = tan(A + B) - tan(A - B) to simplify the equation. Applying this identity to the left side of the equation, we get:

tan x tan2x tan3x = tan(x + 2x + 3x) - tan(x + 2x - 3x)
= tan 6x - tan 0
= tan 6x

**Step 3: Evaluating |sin3x cos3x|**
Now, we need to find the value of |sin3x cos3x|. We can express sin3x and cos3x in terms of tan3x using the identity sin2x = (2tanx)/(1+tan^2x) and cos2x = (1-tan^2x)/(1+tan^2x). Applying these identities, we get:

sin3x = 3tan3x - 4tan^3x
cos3x = 4tan^3x - 3tan3x

Substituting these values into |sin3x cos3x|, we get:

|sin3x cos3x| = |(3tan3x - 4tan^3x)(4tan^3x - 3tan3x)|
= |(12tan^4x - 9tan^2x)(4tan^3x - 3tan3x)|
= |48tan^7x - 36tan^5x - 36tan^5x + 27tan^3x|
= |48tan^7x - 72tan^5x + 27tan^3x|

**Step 4: Final Answer**
The final expression for |sin3x cos3x| is 48tan^7x - 72tan^5x + 27tan^3x. This expression represents the value of |sin3x cos3x| for all valid values of x, except when x = (2n+1)π/2.
Community Answer
Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|?
Explore Courses for JEE exam
Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|?
Question Description
Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|? for JEE 2025 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|? covers all topics & solutions for JEE 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|?.
Solutions for Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|? defined & explained in the simplest way possible. Besides giving the explanation of Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|?, a detailed solution for Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|? has been provided alongside types of Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|? theory, EduRev gives you an ample number of questions to practice Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev