Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|?
**Solution:**
To find the value of |sin3x cos3x|, we need to simplify the given equation and then evaluate the expression. Let's break down the problem step by step:
**Step 1: Simplifying the equation**
The given equation is tan x tan2x tan3x = tan x tan2x tan3x. This equation is true for all values of x except for those where any of the tangents is undefined (i.e., when the denominator of any of the tangents is zero). Since we are interested in finding the value of |sin3x cos3x|, we can assume that x is not equal to (2n+1)π/2, where n is an integer.
**Step 2: Using the trigonometric identity**
We can use the trigonometric identity tan(A) tan(B) = tan(A + B) - tan(A - B) to simplify the equation. Applying this identity to the left side of the equation, we get:
tan x tan2x tan3x = tan(x + 2x + 3x) - tan(x + 2x - 3x)
= tan 6x - tan 0
= tan 6x
**Step 3: Evaluating |sin3x cos3x|**
Now, we need to find the value of |sin3x cos3x|. We can express sin3x and cos3x in terms of tan3x using the identity sin2x = (2tanx)/(1+tan^2x) and cos2x = (1-tan^2x)/(1+tan^2x). Applying these identities, we get:
sin3x = 3tan3x - 4tan^3x
cos3x = 4tan^3x - 3tan3x
Substituting these values into |sin3x cos3x|, we get:
|sin3x cos3x| = |(3tan3x - 4tan^3x)(4tan^3x - 3tan3x)|
= |(12tan^4x - 9tan^2x)(4tan^3x - 3tan3x)|
= |48tan^7x - 36tan^5x - 36tan^5x + 27tan^3x|
= |48tan^7x - 72tan^5x + 27tan^3x|
**Step 4: Final Answer**
The final expression for |sin3x cos3x| is 48tan^7x - 72tan^5x + 27tan^3x. This expression represents the value of |sin3x cos3x| for all valid values of x, except when x = (2n+1)π/2.
Tan x+tan2x+ tan3x=tanxtan2xtan3x then |sin3x+cos3x|?