If Sin α + Sin β = a and Cos α + Cos β = b show that Cos (α + β) =b^2-...
**Proof**
To prove the given equation, we will use the trigonometric identity for the cosine of the sum of two angles:
**Cos (α + β) = Cos α Cos β - Sin α Sin β**
Let's start with the given equations:
**Sin α Sin β = a**
**Cos α Cos β = b**
We need to find the value of **Cos (α β)**.
So, let's find a relationship between **Cos (α + β)** and **Cos (α β)**.
To do this, we will use a trigonometric identity:
**Cos (α + β) = Cos α Cos β - Sin α Sin β**
We can rewrite this identity as:
**Cos α Cos β = Cos (α + β) + Sin α Sin β**
Now, let's square both sides of the equation:
**(Cos α Cos β)^2 = (Cos (α + β) + Sin α Sin β)^2**
Expanding the equation, we have:
**Cos^2(α) Cos^2(β) = Cos^2(α + β) + 2 Cos (α + β) Sin α Sin β + Sin^2(α) Sin^2(β)**
Now, substitute the given equations into the expanded equation:
**b^2 = Cos^2(α + β) + 2 Cos (α + β) a + a^2**
We are interested in finding **Cos (α β)**, so let's isolate it:
**b^2 - a^2 = Cos^2(α + β) + 2 Cos (α + β) a**
Now, let's factor out **Cos (α + β)** from the right side:
**b^2 - a^2 = Cos (α + β) (Cos (α + β) + 2a)**
Divide both sides by **Cos (α + β) + 2a**:
**(b^2 - a^2) / (Cos (α + β) + 2a) = Cos (α + β)**
Finally, substitute the trigonometric identity for **Cos (α + β)**:
**(b^2 - a^2) / (Cos (α + β) + 2a) = Cos (α + β) = Cos (α β)**
Therefore, we have proved that:
**Cos (α β) = (b^2 - a^2) / (Cos (α + β) + 2a)**
Simplifying the expression, we can also write it as:
**Cos (α β) = (b^2 - a^2) / (b^2 + a^2)**
Thus, we have shown that **Cos (α β) = (b^2 - a^2) / (b^2 + a^2)**.
If Sin α + Sin β = a and Cos α + Cos β = b show that Cos (α + β) =b^2-...
Use expansion formula
To make sure you are not studying endlessly, EduRev has designed Class 11 study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Class 11.