Class 12 Exam  >  Class 12 Questions  >  Manganin and constantan have a low temperatur... Start Learning for Free
Manganin and constantan have a low temperature coefficient of resistivity which means that
  • a)
    their resistance values change very little with temperature
  • b)
    their resistance values only change at low temperatures
  • c)
    their resistance values change greatly with temperature
  • d)
    their resistance values do not change with temperature
Correct answer is option 'A'. Can you explain this answer?
Verified Answer
Manganin and constantan have a low temperature coefficient of resistiv...
The semiconductors and insulating material are having negative temperature coefficient of resistance. Therefore, the resistance of semiconductors and insulators decrease with rise in temperature. Alloys, such as manganin, constantan etc. are having very low and positive temperature coefficient of resistance.
View all questions of this test
Most Upvoted Answer
Manganin and constantan have a low temperature coefficient of resistiv...
Resistivity in manganin and constantan is approx. same with temperature change so A is the answer...
Free Test
Community Answer
Manganin and constantan have a low temperature coefficient of resistiv...
Obviously A cuz temperature has only less affect on its resistance and resistivity
Explore Courses for Class 12 exam

Similar Class 12 Doubts

Read the following text and answer the following questions on the basis of the same:Super magnetThe term super magnet is a broad term and encompasses several families of rare-earth magnets that include seventeen elements in the periodic table; namely scandium, yttrium, and the fifteen lanthanides. These elements can be magnetized, but have Curie temperatures below room temperature. This means that in their pure form, their magnetism only appears at low temperatures. However, when they form compounds with transition metals such as iron, nickel, cobalt, etc. Curie temperature rises well above room temperature and they can be used effectively at higher temperatures as well. The main advantage they have over conventional magnets is that their greater strength allows for smaller, lighter magnets to be used. Super magnets are of two categories: (i) N eodymium magnet: These are made from an alloy of neodymium, iron, and boron. This material is currently the strongest known type of permanent magnet. It is typically used in the construction of head actuators in computer hard drives and has many electronic applications, such as electric motors, appliances, and magnetic resonance imaging (MRI). (ii) Samarium-cobalt magnet: These are made from an alloy of samarium and cobalt. This second strongest type of rare Earth magnet is also used in electronic motors, turbo-machinery, and because of its high temperature range tolerance may also have many applications for space travel, such as cryogenics and heat resistant machinery. Rare-earth magnets are extremely brittle and also vulnerable to corrosion, so they are usually plated or coated to protect them from breaking, chipping, or crumbling into powder. Since super magnets are about 10 times stronger than ordinary magnets, safe distance should be maintained otherwise these may damage mechanical watch, CRT monitor, pacemaker, credit cards, magnetically stored media etc.These types of magnets are hazardous for health also. The greater force exerted by rare-earth magnets creates hazards that are not seen with other types of magnet. Magnets larger than a few centimeters are strong enough to cause injuries to body parts pinched between two magnets or a magnet and a metal surface, even causing broken bones. Neodymium permanent magnets lose their magnetism 5% every 100 years. So, in the truest sense Neodymium magnets may be considered as a permanent magnet.Curie point of pure rare Earth elements is

Read the following text and answer the following questions on the basis of the same:Super magnet The term super magnet is a broad term and encompasses several families of rare-earth magnets that include seventeen elements in the periodic table; namely scandium, yttrium, and the fifteen lanthanides. These elements can be magnetized, but have Curie temperatures below room temperature. This means that in their pure form, their magnetism only appears at low temperatures. However, when they form compounds with transition metals such as iron, nickel, cobalt, etc. Curie temperature rises well above room temperature and they can be used effectively at higher temperatures as well. The main advantage they have over conventional magnets is that their greater strength allows for smaller, lighter magnets to be used. Super magnets are of two categories: (i) Neodymium magnet: These are made from an alloy of neodymium, iron, and boron. This material is currently the strongest known type of permanent magnet. It is typically used in the construction of head actuators in computer hard drives and has many electronic applications, such as electric motors, appliances, and magnetic resonance imaging (MRI). (ii) Samarium-cobalt magnet: These are made from an alloy of samarium and cobalt. This second strongest type of rare Earth magnet is also used in electronic motors, turbo-machinery, and because of its high temperature range tolerance may also have many applications for space travel, such as cryogenics and heat resistant machinery. Rare-earth magnets are extremely brittle and also vulnerable to corrosion, so they are usually plated or coated to protect them from breaking, chipping, or crumbling into powder. Since super magnets are about 10 times stronger than ordinary magnets, safe distance should be maintained otherwise these may damage mechanical watch, CRT monitor, pacemaker, credit cards, magnetically stored media etc. These types of magnets are hazardous for health also. The greater force exerted by rare-earth magnets creates hazards that are not seen with other types of magnet. Magnets larger than a few centimeters are strong enough to cause injuries to body parts pinched between two magnets or a magnet and a metal surface, even causing broken bones. Neodymium permanent magnets lose their magnetism 5% every 100 years. So, in the truest sense Neodymium magnets may be considered as a permanent magnet.Super magnets are about _____ time stronger than ordinary magnets.

Read the following text and answer the following questions on the basis of the same:Super magnet The term super magnet is a broad term and encompasses several families of rare-earth magnets that include seventeen elements in the periodic table; namely scandium, yttrium, and the fifteen lanthanides. These elements can be magnetized, but have Curie temperatures below room temperature. This means that in their pure form, their magnetism only appears at low temperatures. However, when they form compounds with transition metals such as iron, nickel, cobalt, etc. Curie temperature rises well above room temperature and they can be used effectively at higher temperatures as well. The main advantage they have over conventional magnets is that their greater strength allows for smaller, lighter magnets to be used. Super magnets are of two categories:(i) Neodymium magnet: These are made from an alloy of neodymium, iron, and boron. This material is currently the strongest known type of permanent magnet. It is typically used in the construction of head actuators in computer hard drives and has many electronic applications, such as electric motors, appliances, and magnetic resonance imaging (MRI).(ii) Samarium-cobalt magnet: These are made from an alloy of samarium and cobalt. This second strongest type of rare Earth magnet is also used in electronic motors, turbo-machinery, and because of its high temperature range tolerance may also have many applications for space travel, such as cryogenics and heat resistant machinery. Rare-earth magnets are extremely brittle and also vulnerable to corrosion, so they are usually plated or coated to protect them from breaking, chipping, or crumbling into powder. Since super magnets are about 10 times stronger than ordinary magnets, safe distance should be maintained otherwise these may damage mechanical watch, CRT monitor, pacemaker, credit cards, magnetically stored media etc. These types of magnets are hazardous for health also. The greater force exerted by rare-earth magnets creates hazards that are not seen with other types of magnet. Magnets larger than a few centimeters are strong enough to cause injuries to body parts pinched between two magnets or a magnet and a metal surface, even causing broken bones. Neodymium permanent magnets lose their magnetism 5% every 100 years. So, in the truest sense Neodymium magnets may be considered as a permanent magnet.Neodymium and Samarium are

Manganin and constantan have a low temperature coefficient of resistivity which means thata)their resistance values change very little with temperatureb)their resistance values only change at low temperaturesc)their resistance values change greatly with temperatured)their resistance values do not change with temperatureCorrect answer is option 'A'. Can you explain this answer?
Question Description
Manganin and constantan have a low temperature coefficient of resistivity which means thata)their resistance values change very little with temperatureb)their resistance values only change at low temperaturesc)their resistance values change greatly with temperatured)their resistance values do not change with temperatureCorrect answer is option 'A'. Can you explain this answer? for Class 12 2024 is part of Class 12 preparation. The Question and answers have been prepared according to the Class 12 exam syllabus. Information about Manganin and constantan have a low temperature coefficient of resistivity which means thata)their resistance values change very little with temperatureb)their resistance values only change at low temperaturesc)their resistance values change greatly with temperatured)their resistance values do not change with temperatureCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for Class 12 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Manganin and constantan have a low temperature coefficient of resistivity which means thata)their resistance values change very little with temperatureb)their resistance values only change at low temperaturesc)their resistance values change greatly with temperatured)their resistance values do not change with temperatureCorrect answer is option 'A'. Can you explain this answer?.
Solutions for Manganin and constantan have a low temperature coefficient of resistivity which means thata)their resistance values change very little with temperatureb)their resistance values only change at low temperaturesc)their resistance values change greatly with temperatured)their resistance values do not change with temperatureCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for Class 12. Download more important topics, notes, lectures and mock test series for Class 12 Exam by signing up for free.
Here you can find the meaning of Manganin and constantan have a low temperature coefficient of resistivity which means thata)their resistance values change very little with temperatureb)their resistance values only change at low temperaturesc)their resistance values change greatly with temperatured)their resistance values do not change with temperatureCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Manganin and constantan have a low temperature coefficient of resistivity which means thata)their resistance values change very little with temperatureb)their resistance values only change at low temperaturesc)their resistance values change greatly with temperatured)their resistance values do not change with temperatureCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for Manganin and constantan have a low temperature coefficient of resistivity which means thata)their resistance values change very little with temperatureb)their resistance values only change at low temperaturesc)their resistance values change greatly with temperatured)their resistance values do not change with temperatureCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of Manganin and constantan have a low temperature coefficient of resistivity which means thata)their resistance values change very little with temperatureb)their resistance values only change at low temperaturesc)their resistance values change greatly with temperatured)their resistance values do not change with temperatureCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Manganin and constantan have a low temperature coefficient of resistivity which means thata)their resistance values change very little with temperatureb)their resistance values only change at low temperaturesc)their resistance values change greatly with temperatured)their resistance values do not change with temperatureCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice Class 12 tests.
Explore Courses for Class 12 exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev