Class 12 Exam  >  Class 12 Questions  >  A device which converts electrical energy int... Start Learning for Free
A device which converts electrical energy into mechanical energy is called:​
  • a)
    Electric generator
  • b)
    Electric motor
  • c)
    Electric transformer
  • d)
    Electric conductor
Correct answer is option 'B'. Can you explain this answer?
Most Upvoted Answer
A device which converts electrical energy into mechanical energy is ca...
A device which converts electrical energy into mechanical energy is called an electrical motor.
The working principle of an electric motor depends on the magnetic and electric field interaction.
There are two types of electric motor and they are:
AC motor: Converts alternating current into mechanical power. Linear motor, synchronous motor, and induction motor are the three types of AC motor.
DC motor: Converts direct current into mechanical power. Self-excited motor and separately excited are the two classifications of DC motor.
 
Free Test
Community Answer
A device which converts electrical energy into mechanical energy is ca...
A device which converts electrical energy into mechanical energy is called an electrical motor.
The working principle of an electric motor depends on the magnetic and electric field interaction.
There are two types of electric motor and they are:
AC motor: Converts alternating current into mechanical power. Linear motor, synchronous motor, and induction motor are the three types of AC motor.
DC motor: Converts direct current into mechanical power. Self-excited motor and separately excited are the two classifications of DC motor.
 
Explore Courses for Class 12 exam

Similar Class 12 Doubts

Read the following text and answer the following questions on the basis of the same:Spark coil The principle of electromagnetic induction was discovered by Michael Faraday in 1831. Induction coils were used widely in electrical experiments and for medical therapy during the last half of the 19th century, eventually leading to the development of radio in the 1890's. The spark coil designed on the principle of electromagnetic induction was the heart of the earliest radio transmitters. Marconi used a spark coil designed by Heinrich Rhumkorff in his early experiments. An induction coil or "spark coil" is a type of electrical transformer used to produce high-voltage pulses from a low-voltage (DC) supply. To create the flux changes necessary to induce voltage in the secondary coil, the direct current in the primary coil is repeatedly interrupted by a vibrating mechanical contact called interrupter.The spark scoil consists of two coils of insulated wire wound around a common iron core. One coil, called the primary coil, is made from relatively few (tens or hundreds) turns of coarse wire. The other coil, the secondary coil typically consists of up to a million turns of fine wire (up to 40 gaug e). An electric current is passed through the primary, creating a magnetic field. Because of the common core, most of the primary's flux couples with the secondary. When the primary current is suddenly interrupted, the magnetic field rapidly collapses. This causes a high voltage pulse to be developed across the secondary terminals due to electromagnetic induction. Because of the large number of turns in the secondary coil, the secondary voltage pulse is typically many thousands of volts. This voltage is sufficient to create an electric spark, to jump across an air gap separating the secondary's output terminals. For this reason, this induction coils are also called spark coils. To operate the coil continually, the DC supply current must be repeatedly connected and disconnected. To do that, a magnetically activated vibrating arm called an interrupter is used which rapidly connects and breaks the current flowing into the primary coil. The interrupter is mounted on the end of the coil next to the iron core. When the power is turned on, the produced magnetic field attracts the armature. When the armature has moved far enough, contacts in the primary circuit breaks and disconnects the primary current. Disconnecting the current causes the magnetic field to collapse and create the spark. A short time later the contacts reconnect, and the process repeats. An arc which may form at the interrupter contacts is undesirable. To prevent this, a capacitor of 0.5 to 15 μF is connected across the primary coil.Spark coil is a type of

Read the following text and answer the following questions on the basis of the same: At power plant, a transformer increases the voltage of generated power by thousands of volts so that it can be sent of long distances through high-voltage transmission power lines. Transmission lines are bundles of wires that carry electric power from power plants to distant substations. At substations, transformers lower the voltage of incoming power to make it acceptable for high volume delivery to nearby end-users. Electricity is sent at extremely high voltage because it limits so-called line losses. Very good conductors of electricity also offer some resistance and this resistance becomes considerable over long distances causing considerable loss.At generating station, normally voltage is stepped up to around thousands of volts. Power losses increase with the square of current. Therefore, keeping voltage high current becomes low and the loss is minimized. Another option of minimizing loss is the use of wires of superconducting material. Super-conducting materials are capable of conducting without resistance, they must be kept extremely cold, nearly absolute zero, and this requirement makes standard superconducting materials impractical to use. However, recent advances in superconducting materials have decreased cooling requirements. In Germany recently 1 km of superconducting cable have been installed connecting the generating station and the destination. It has eliminated the line loss and the cable is capable of sending five times more electricity than conventional cable. Using superconducting cables Germany has also get rid of the need of costly transformers. Transformers generate waste heat when they are in operation and oil is the coolant of choice. It transfers the heat through convection to the transformer housing, which has cooling fins or radiators similar to heat exchangers on the outside. Flush point is a very important parameter of transformer oil. Flashpoint of an oil is the temperature at which the oil ignites spontaneously. This must be as high as possible (not less than 160° C from the point of safety). Fire point is the temperature at which the oil flashes and continuously burns. This must be very high for the chosen oil (not less than 200° C).Why does stepping up voltages reduce power loss?

Read the following text and answer the following questions on the basis of the same:At power plant, a transformer increases the voltage of generated power by thousands of volts so that it can be sent of long distances through high-voltage transmission power lines. Transmission lines are bundles of wires that carry electric power from power plants to distant substations. At substations, transformers lower the voltage of incoming power to make it acceptable for high volume delivery to nearby end-users. Electricity is sent at extremely high voltage because it limits so-called line losses. Very good conductors of electricity also offer some resistance and this resistance becomes considerable over long distances causing considerable loss.At generating station, normally voltage is stepped up to around thousands of volts. Power losses increase with the square of current. Therefore, keeping voltage high current becomes low and the loss is minimized. Another option of minimizing loss is the use of wires of superconducting material. Super-conducting materials are capable of conducting without resistance, they must be kept extremely cold, nearly absolute zero, and this requirement makes standard superconducting materials impractical to use. However, recent advances in superconducting materials have decreased cooling requirements. In Germany recently 1 km of superconducting cable have been installed connecting the generating station and the destination. It has eliminated the line loss and the cable is capable of sending five times more electricity than conventional cable. Using superconducting cables Germany has also get rid of the need of costly transformers. Transformers generate waste heat when they are in operation and oil is the coolant of choice. It transfers the heat through convection to the transformer housing, which has cooling fins or radiators similar to heat exchangers on the outside. Flush point is a very important parameter of transformer oil. Flashpoint of an oil is the temperature at which the oil ignites spontaneously. This must be as high as possible (not less than 160° C from the point of safety). Fire point is the temperature at which the oil flashes and continuously burns. This must be very high for the chosen oil (not less than 200° C).Which of the following statement is true for long distance transmission of electricity?

A device which converts electrical energy into mechanical energy is called:​a)Electric generatorb)Electric motorc)Electric transformerd)Electric conductorCorrect answer is option 'B'. Can you explain this answer?
Question Description
A device which converts electrical energy into mechanical energy is called:​a)Electric generatorb)Electric motorc)Electric transformerd)Electric conductorCorrect answer is option 'B'. Can you explain this answer? for Class 12 2024 is part of Class 12 preparation. The Question and answers have been prepared according to the Class 12 exam syllabus. Information about A device which converts electrical energy into mechanical energy is called:​a)Electric generatorb)Electric motorc)Electric transformerd)Electric conductorCorrect answer is option 'B'. Can you explain this answer? covers all topics & solutions for Class 12 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for A device which converts electrical energy into mechanical energy is called:​a)Electric generatorb)Electric motorc)Electric transformerd)Electric conductorCorrect answer is option 'B'. Can you explain this answer?.
Solutions for A device which converts electrical energy into mechanical energy is called:​a)Electric generatorb)Electric motorc)Electric transformerd)Electric conductorCorrect answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for Class 12. Download more important topics, notes, lectures and mock test series for Class 12 Exam by signing up for free.
Here you can find the meaning of A device which converts electrical energy into mechanical energy is called:​a)Electric generatorb)Electric motorc)Electric transformerd)Electric conductorCorrect answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of A device which converts electrical energy into mechanical energy is called:​a)Electric generatorb)Electric motorc)Electric transformerd)Electric conductorCorrect answer is option 'B'. Can you explain this answer?, a detailed solution for A device which converts electrical energy into mechanical energy is called:​a)Electric generatorb)Electric motorc)Electric transformerd)Electric conductorCorrect answer is option 'B'. Can you explain this answer? has been provided alongside types of A device which converts electrical energy into mechanical energy is called:​a)Electric generatorb)Electric motorc)Electric transformerd)Electric conductorCorrect answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice A device which converts electrical energy into mechanical energy is called:​a)Electric generatorb)Electric motorc)Electric transformerd)Electric conductorCorrect answer is option 'B'. Can you explain this answer? tests, examples and also practice Class 12 tests.
Explore Courses for Class 12 exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev